Laser Drilling & Plasma Descum Employed In The Process of Wafer-Level Chip Scale Package(WLCSP)

Jack Huang
{"title":"Laser Drilling & Plasma Descum Employed In The Process of Wafer-Level Chip Scale Package(WLCSP)","authors":"Jack Huang","doi":"10.1109/IMPACT56280.2022.9966690","DOIUrl":null,"url":null,"abstract":"Laser drilling is widely employed for PCB/FPCB production, especially for ABF/RDL substrates used for 5G telecommunication. Compared with the mechanical drilling which is usually used for the via diameter over 200um, laser drilling can fulfill the smaller via diameter amid 15um and 200um. Plasma descum and wet cleaning are the common post-processes after the laser drilling to obtain the better via quality by removing drilling residue and debris. But traditional nano-second/pico-second lasers used in laser drilling may not drill well on the protective layer or redistribution layer(RDL) of the wafer-level chip-scale-package(WLCSP). Challenges including: (1) Bottom metal layer damaged or insulation layer peeling from the metal layer attributed to the severe heat-affected-zone(HAZ). (2) Via diameter smaller than 30um is unachievable. (3) Positional error below 5um can’t be secured while drilling at the faster speed. This paper will demonstrate using the femto-second laser with the inherent feature of cold ablation to drill vias on the ABF layer and then carrying out the post-treatment of plasma descum to fulfill the requirements of higher taper angle and faster throughput. Advantages include: (1) Flesible drilling capability, via diameter is programmable in the range of 15um to 200um. (2) Undamaged and residue-free on the bottom metal layer. (3) Smooth via sidewall. (4) Continuous drilling can reach the speed of 3000 via/sec.","PeriodicalId":13517,"journal":{"name":"Impact","volume":"88 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Impact","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT56280.2022.9966690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Laser drilling is widely employed for PCB/FPCB production, especially for ABF/RDL substrates used for 5G telecommunication. Compared with the mechanical drilling which is usually used for the via diameter over 200um, laser drilling can fulfill the smaller via diameter amid 15um and 200um. Plasma descum and wet cleaning are the common post-processes after the laser drilling to obtain the better via quality by removing drilling residue and debris. But traditional nano-second/pico-second lasers used in laser drilling may not drill well on the protective layer or redistribution layer(RDL) of the wafer-level chip-scale-package(WLCSP). Challenges including: (1) Bottom metal layer damaged or insulation layer peeling from the metal layer attributed to the severe heat-affected-zone(HAZ). (2) Via diameter smaller than 30um is unachievable. (3) Positional error below 5um can’t be secured while drilling at the faster speed. This paper will demonstrate using the femto-second laser with the inherent feature of cold ablation to drill vias on the ABF layer and then carrying out the post-treatment of plasma descum to fulfill the requirements of higher taper angle and faster throughput. Advantages include: (1) Flesible drilling capability, via diameter is programmable in the range of 15um to 200um. (2) Undamaged and residue-free on the bottom metal layer. (3) Smooth via sidewall. (4) Continuous drilling can reach the speed of 3000 via/sec.
激光打孔&等离子体剥离在晶圆级芯片规模封装(WLCSP)工艺中的应用
激光打孔广泛应用于PCB/FPCB的生产,特别是用于5G电信的ABF/RDL基板。相对于机械钻孔通常用于200um以上的通径,激光钻孔可以完成15um - 200um之间较小的通径。等离子脱屑和湿式清洗是激光钻孔后常见的后处理工序,目的是去除钻孔残留物和碎屑,获得较好的通孔质量。但传统的纳秒/皮秒激光在圆片级芯片级封装(WLCSP)的保护层或重分布层(RDL)上钻孔效果不佳。挑战包括:(1)由于严重的热影响区(HAZ),底部金属层损坏或绝缘层从金属层脱落。(2)无法实现直径小于30um的通孔。(3)钻孔速度越快,定位误差不能保证在5um以下。本文将演示利用具有冷烧蚀固有特性的飞秒激光在ABF层上钻孔,然后对等离子体碎片进行后处理,以满足更高的锥角和更快的吞吐量要求。优点包括:(1)钻进能力灵活,通径可在15um至200um范围内可编程。(2)底层金属层无破损、无残留物。(3)光滑通径侧壁。(4)连续钻孔速度可达3000孔/秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信