{"title":"Analysis of Flows of Polymeric Solutions and Liquid Crystals","authors":"N. Mori","doi":"10.1678/RHEOLOGY.32.245","DOIUrl":null,"url":null,"abstract":"Flows of polymeric fluids and liquid crystalline polymers (LCPs) were studied in complex flow geometries. In the present paper, however, there is a focus on the flow analysis of the flow of LCPs. Numerical simulations of flows of LCPs were carried out using the modified Doi equation with the quadratic closure approximation. Molecular orientation of LCPs is strongly affected by the velocity field including both the shear and elongational flows in the complex geometry while the velocity distribution is modified by the molecular orientation. Numerical simulations for a flow between parallel plates containing a cylinder and a spinning flow are presented as examples. A novel rubbing-free alignment layer for LCs was proposed as an application of flow-induced molecular orientation of LCPs. The development of wavy texture in startup flows of LCPs through a slit cell was discussed.","PeriodicalId":17434,"journal":{"name":"Journal of the Society of Rheology, Japan","volume":"78 1","pages":"245-251"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society of Rheology, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1678/RHEOLOGY.32.245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flows of polymeric fluids and liquid crystalline polymers (LCPs) were studied in complex flow geometries. In the present paper, however, there is a focus on the flow analysis of the flow of LCPs. Numerical simulations of flows of LCPs were carried out using the modified Doi equation with the quadratic closure approximation. Molecular orientation of LCPs is strongly affected by the velocity field including both the shear and elongational flows in the complex geometry while the velocity distribution is modified by the molecular orientation. Numerical simulations for a flow between parallel plates containing a cylinder and a spinning flow are presented as examples. A novel rubbing-free alignment layer for LCs was proposed as an application of flow-induced molecular orientation of LCPs. The development of wavy texture in startup flows of LCPs through a slit cell was discussed.