P. Peylin, P. Ciais, A. Denning, P. Tans, Joseph A. Berry, James W. C. White
{"title":"A 3‐dimensional study of δ18O in atmospheric CO2: contribution of different land ecosystems","authors":"P. Peylin, P. Ciais, A. Denning, P. Tans, Joseph A. Berry, James W. C. White","doi":"10.3402/TELLUSB.V51I3.16452","DOIUrl":null,"url":null,"abstract":"Land biospheric carbon exchange associated with respiration and photosynthesis exerts a major control on the oxygen isotope composition (δ 18 O) of atmospheric CO 2 especially with respect to the seasonal cycle. In particular, an important feature that requires our attention is the phase of the seasonal cycle of δ 18 O which lags CO 2 by one month in the Arctic. We have developed a global parameterization of the land biotic exchange of 180 in CO 2 , which has been prescribed in an atmospheric 3-D transport model in order to simulate the global atmospheric distribution of δ 18 O. Furthermore, we have separated in the model the specific contribution of different regions of the globe to the seasonal and latitudinal variation of δ 18 O. The model simulated values are compared in detail with atmospheric observations made at 22 different remote stations. The respective role of respiration vs. photosynthesis in determining the phase and amplitude of the δ 18 O seasonal cycle is also analysed. Based on a good agreement between our model simulation and the atmospheric observations, we observe that the large seasonal cycle of δ 18 O at high latitudes is mainly due to the respiratory fluxes of all extra-tropical ecosystems while for CO 2 the relative contributions of photosynthesis and respiration to the overall seasonal cycle are similar. Geographically, the CO 2 exchanges with the northern Siberian ecosystem dominate the δ 18 O seasonality at all remote stations of the northern hemisphere, reflecting the strongly continental climate of that region. OI: 10.1034/j.1600-0889.1999.t01-2-00006.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":"115 1","pages":"642-667"},"PeriodicalIF":2.3000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3402/TELLUSB.V51I3.16452","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 70
Abstract
Land biospheric carbon exchange associated with respiration and photosynthesis exerts a major control on the oxygen isotope composition (δ 18 O) of atmospheric CO 2 especially with respect to the seasonal cycle. In particular, an important feature that requires our attention is the phase of the seasonal cycle of δ 18 O which lags CO 2 by one month in the Arctic. We have developed a global parameterization of the land biotic exchange of 180 in CO 2 , which has been prescribed in an atmospheric 3-D transport model in order to simulate the global atmospheric distribution of δ 18 O. Furthermore, we have separated in the model the specific contribution of different regions of the globe to the seasonal and latitudinal variation of δ 18 O. The model simulated values are compared in detail with atmospheric observations made at 22 different remote stations. The respective role of respiration vs. photosynthesis in determining the phase and amplitude of the δ 18 O seasonal cycle is also analysed. Based on a good agreement between our model simulation and the atmospheric observations, we observe that the large seasonal cycle of δ 18 O at high latitudes is mainly due to the respiratory fluxes of all extra-tropical ecosystems while for CO 2 the relative contributions of photosynthesis and respiration to the overall seasonal cycle are similar. Geographically, the CO 2 exchanges with the northern Siberian ecosystem dominate the δ 18 O seasonality at all remote stations of the northern hemisphere, reflecting the strongly continental climate of that region. OI: 10.1034/j.1600-0889.1999.t01-2-00006.x
期刊介绍:
Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.