Chow rings of low-degree Hurwitz spaces

IF 1.2 1区 数学 Q1 MATHEMATICS
Samir Canning, H. Larson
{"title":"Chow rings of low-degree Hurwitz spaces","authors":"Samir Canning, H. Larson","doi":"10.1515/crelle-2022-0024","DOIUrl":null,"url":null,"abstract":"Abstract While there is much work and many conjectures surrounding the intersection theory of the moduli space of curves, relatively little is known about the intersection theory of the Hurwitz space ℋk,g{\\mathcal{H}_{k,g}} parametrizing smooth degree k, genus g covers of ℙ1{\\mathbb{P}^{1}}. Let k=3,4,5{k=3,4,5}. We prove that the rational Chow rings of ℋk,g{\\mathcal{H}_{k,g}} stabilize in a suitable sense as g tends to infinity. In the case k=3{k=3}, we completely determine the Chow rings for all g. We also prove that the rational Chow groups of the simply branched Hurwitz space ℋk,gs⊂ℋk,g{\\mathcal{H}^{s}_{k,g}\\subset\\mathcal{H}_{k,g}} are zero in codimension up to roughly gk{\\frac{g}{k}}. In [S. Canning and H. Larson, The Chow rings of the moduli spaces of curves of genus 7,8{7,8} and 9, preprint 2021, arXiv:2104.05820], results developed in this paper are used to prove that the Chow rings of ℳ7,ℳ8,{\\mathcal{M}_{7},\\mathcal{M}_{8},} and ℳ9{\\mathcal{M}_{9}} are tautological.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"20 1","pages":"103 - 152"},"PeriodicalIF":1.2000,"publicationDate":"2021-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0024","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract While there is much work and many conjectures surrounding the intersection theory of the moduli space of curves, relatively little is known about the intersection theory of the Hurwitz space ℋk,g{\mathcal{H}_{k,g}} parametrizing smooth degree k, genus g covers of ℙ1{\mathbb{P}^{1}}. Let k=3,4,5{k=3,4,5}. We prove that the rational Chow rings of ℋk,g{\mathcal{H}_{k,g}} stabilize in a suitable sense as g tends to infinity. In the case k=3{k=3}, we completely determine the Chow rings for all g. We also prove that the rational Chow groups of the simply branched Hurwitz space ℋk,gs⊂ℋk,g{\mathcal{H}^{s}_{k,g}\subset\mathcal{H}_{k,g}} are zero in codimension up to roughly gk{\frac{g}{k}}. In [S. Canning and H. Larson, The Chow rings of the moduli spaces of curves of genus 7,8{7,8} and 9, preprint 2021, arXiv:2104.05820], results developed in this paper are used to prove that the Chow rings of ℳ7,ℳ8,{\mathcal{M}_{7},\mathcal{M}_{8},} and ℳ9{\mathcal{M}_{9}} are tautological.
低次Hurwitz空间的Chow环
摘要曲线模空间的交点理论有很多的研究和猜想,但对于参数化光滑度k的Hurwitz空间的交点理论(g{\mathcal{H}_{k,g}}),g属覆盖(g} {\mathbb{P}^{1}})的研究相对较少。让k = 3、4、5 {k = 3、4、5}。证明了H k,g{\数学{H}_{k,g}}的有理Chow环在g趋于无穷时具有适当的稳定性。在k=3{k=3}的情况下,我们完全确定了所有g的Chow环。我们也证明了简支Hurwitz空间H k,gs∧H k,g{s}_{k,g}\子集\mathcal{H}_{k,g}}的有理chow群在余维上为零,直到大约gk{\frac{g}{k}}。在[S。Canning和H. Larson, 7、8{7,8}和9属曲线模空间的Chow环,预印2021,arXiv:2104.05820],利用本文的结果证明了{\mathcal{M}_{7},\mathcal{M}_{8},}和{\mathcal{M}_{9}}的Chow环是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信