{"title":"Chow rings of low-degree Hurwitz spaces","authors":"Samir Canning, H. Larson","doi":"10.1515/crelle-2022-0024","DOIUrl":null,"url":null,"abstract":"Abstract While there is much work and many conjectures surrounding the intersection theory of the moduli space of curves, relatively little is known about the intersection theory of the Hurwitz space ℋk,g{\\mathcal{H}_{k,g}} parametrizing smooth degree k, genus g covers of ℙ1{\\mathbb{P}^{1}}. Let k=3,4,5{k=3,4,5}. We prove that the rational Chow rings of ℋk,g{\\mathcal{H}_{k,g}} stabilize in a suitable sense as g tends to infinity. In the case k=3{k=3}, we completely determine the Chow rings for all g. We also prove that the rational Chow groups of the simply branched Hurwitz space ℋk,gs⊂ℋk,g{\\mathcal{H}^{s}_{k,g}\\subset\\mathcal{H}_{k,g}} are zero in codimension up to roughly gk{\\frac{g}{k}}. In [S. Canning and H. Larson, The Chow rings of the moduli spaces of curves of genus 7,8{7,8} and 9, preprint 2021, arXiv:2104.05820], results developed in this paper are used to prove that the Chow rings of ℳ7,ℳ8,{\\mathcal{M}_{7},\\mathcal{M}_{8},} and ℳ9{\\mathcal{M}_{9}} are tautological.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9
Abstract
Abstract While there is much work and many conjectures surrounding the intersection theory of the moduli space of curves, relatively little is known about the intersection theory of the Hurwitz space ℋk,g{\mathcal{H}_{k,g}} parametrizing smooth degree k, genus g covers of ℙ1{\mathbb{P}^{1}}. Let k=3,4,5{k=3,4,5}. We prove that the rational Chow rings of ℋk,g{\mathcal{H}_{k,g}} stabilize in a suitable sense as g tends to infinity. In the case k=3{k=3}, we completely determine the Chow rings for all g. We also prove that the rational Chow groups of the simply branched Hurwitz space ℋk,gs⊂ℋk,g{\mathcal{H}^{s}_{k,g}\subset\mathcal{H}_{k,g}} are zero in codimension up to roughly gk{\frac{g}{k}}. In [S. Canning and H. Larson, The Chow rings of the moduli spaces of curves of genus 7,8{7,8} and 9, preprint 2021, arXiv:2104.05820], results developed in this paper are used to prove that the Chow rings of ℳ7,ℳ8,{\mathcal{M}_{7},\mathcal{M}_{8},} and ℳ9{\mathcal{M}_{9}} are tautological.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.