Tomohiro Furukawa, K. Ishibashi, H. Itoyama, Satoshi Kambayashi
{"title":"Static force potential of a non-Abelian gauge theory in a finite box in Coulomb gauge","authors":"Tomohiro Furukawa, K. Ishibashi, H. Itoyama, Satoshi Kambayashi","doi":"10.1103/PHYSREVD.103.056003","DOIUrl":null,"url":null,"abstract":"Force potential exerting between two classical static sources of pure non-abelian gauge theory in the Coulomb gauge is reconsidered at a periodic/twisted box of size $L^3$. Its perturbative behavior is examined by the short-distance expansion as well as by the derivative expansion. The latter expansion to one-loop order confirms the well-known change in the effective coupling constant at the Coulomb part as well as the Uehling potential while the former is given by the convolution of two Coulomb Green functions being non-singular at $\\bm{x}=\\bm{y}$. The effect of the twist comes in through its Green function of the sector.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.056003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Force potential exerting between two classical static sources of pure non-abelian gauge theory in the Coulomb gauge is reconsidered at a periodic/twisted box of size $L^3$. Its perturbative behavior is examined by the short-distance expansion as well as by the derivative expansion. The latter expansion to one-loop order confirms the well-known change in the effective coupling constant at the Coulomb part as well as the Uehling potential while the former is given by the convolution of two Coulomb Green functions being non-singular at $\bm{x}=\bm{y}$. The effect of the twist comes in through its Green function of the sector.