{"title":"Review and comparison of face detection algorithms","authors":"K. Dang, Shanu Sharma","doi":"10.1109/CONFLUENCE.2017.7943228","DOIUrl":null,"url":null,"abstract":"With the tremendous increase in video and image database there is a great need of automatic understanding and examination of data by the intelligent systems as manually it is becoming out of reach. Narrowing it down to one specific domain, one of the most specific objects that can be traced in the images are people i.e. faces. Face detection is becoming a challenge by its increasing use in number of applications. It is the first step for face recognition, face analysis and detection of other features of face. In this paper, various face detection algorithms are discussed and analyzed like Viola-Jones, SMQT features & SNOW Classifier, Neural Network-Based Face Detection and Support Vector Machine-Based face detection. All these face detection methods are compared based on the precision and recall value calculated using a DetEval Software which deals with precised values of the bounding boxes around the faces to give accurate results.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"10 1","pages":"629-633"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80
Abstract
With the tremendous increase in video and image database there is a great need of automatic understanding and examination of data by the intelligent systems as manually it is becoming out of reach. Narrowing it down to one specific domain, one of the most specific objects that can be traced in the images are people i.e. faces. Face detection is becoming a challenge by its increasing use in number of applications. It is the first step for face recognition, face analysis and detection of other features of face. In this paper, various face detection algorithms are discussed and analyzed like Viola-Jones, SMQT features & SNOW Classifier, Neural Network-Based Face Detection and Support Vector Machine-Based face detection. All these face detection methods are compared based on the precision and recall value calculated using a DetEval Software which deals with precised values of the bounding boxes around the faces to give accurate results.