Joshua Wiethölter, Aylin Koldemir, M. Reimann, T. Block, Jutta Kösters, O. Janka, Rainer Pöttgen
{"title":"Mössbauer-spectroscopic characterization of the stannides Sr2Pd2Sn and Eu2Pd2Sn","authors":"Joshua Wiethölter, Aylin Koldemir, M. Reimann, T. Block, Jutta Kösters, O. Janka, Rainer Pöttgen","doi":"10.1515/znb-2023-0015","DOIUrl":null,"url":null,"abstract":"Abstract The Ca2Pd2Ge-type stannides Sr2Pd2Sn and Eu2Pd2Sn were synthesized by reaction of the elements in sealed tantalum ampoules in a high-frequency furnace and characterized by powder X-ray diffraction. The structure of Sr2Pd2Sn (Fdd2, a = 1063.95(5), b = 1623.22(9), c = 594.63(14) pm, wR2 = 0.0472, 972 F2 values and 26 variables) was refined from single-crystal X-ray diffractometer data. The striking structural motif features equidistant chains formed by the palladium atoms (304.7 pm Pd–Pd), which are interlinked by the tin atoms (266.9 and 268.7 pm Pd–Sn). Together, the palladium and tin atoms form a three-dimensional [Pd2Sn]δ– polyanionic network in which the strontium atoms reside in larger cavities. The divalent character of europium in Eu2Pd2Sn was manifested by 151Eu Mössbauer spectroscopy. The isomer shift is δ = −9.48(1) mm s−1 at room temperature. The results of 119Sn Mössbauer-spectroscopic experiments have confirmed the tin site determined by the single-crystal study, the isomer shifts being δ = 1.71(1) mm s−1 for Eu2Pd2Sn and δ = 1.73(1) mm s−1 for Sr2Pd2Sn. Sr2Pd2Sn is a Pauli paramagnet with a susceptibility of 2.2(1) × 10−5 emu mol−1 at room temperature. Eu2Pd2Sn shows Curie-Weiss paramagnetism with an experimental magnetic moment of 7.85(1) µB per Eu atom, confirming divalent europium. The europium magnetic moments order antiferromagnetically at TN = 14 K.","PeriodicalId":23831,"journal":{"name":"Zeitschrift für Naturforschung B","volume":"77 1","pages":"301 - 306"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znb-2023-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The Ca2Pd2Ge-type stannides Sr2Pd2Sn and Eu2Pd2Sn were synthesized by reaction of the elements in sealed tantalum ampoules in a high-frequency furnace and characterized by powder X-ray diffraction. The structure of Sr2Pd2Sn (Fdd2, a = 1063.95(5), b = 1623.22(9), c = 594.63(14) pm, wR2 = 0.0472, 972 F2 values and 26 variables) was refined from single-crystal X-ray diffractometer data. The striking structural motif features equidistant chains formed by the palladium atoms (304.7 pm Pd–Pd), which are interlinked by the tin atoms (266.9 and 268.7 pm Pd–Sn). Together, the palladium and tin atoms form a three-dimensional [Pd2Sn]δ– polyanionic network in which the strontium atoms reside in larger cavities. The divalent character of europium in Eu2Pd2Sn was manifested by 151Eu Mössbauer spectroscopy. The isomer shift is δ = −9.48(1) mm s−1 at room temperature. The results of 119Sn Mössbauer-spectroscopic experiments have confirmed the tin site determined by the single-crystal study, the isomer shifts being δ = 1.71(1) mm s−1 for Eu2Pd2Sn and δ = 1.73(1) mm s−1 for Sr2Pd2Sn. Sr2Pd2Sn is a Pauli paramagnet with a susceptibility of 2.2(1) × 10−5 emu mol−1 at room temperature. Eu2Pd2Sn shows Curie-Weiss paramagnetism with an experimental magnetic moment of 7.85(1) µB per Eu atom, confirming divalent europium. The europium magnetic moments order antiferromagnetically at TN = 14 K.