{"title":"Peak Load Shifting and Electricity Charges Reduction Realized by Electric Vehicle Storage Virtualization","authors":"Harunaga Onda, Soushi Yamamoto, Hidetoshi Takeshit, Satoru Okamoto, Naoaki Yamanaka","doi":"10.1016/j.aasri.2014.05.036","DOIUrl":null,"url":null,"abstract":"<div><p>Electric Vehicle (EV) battery is large capacity, which is equivalent to two days of home power consumption, and cheaper than household battery. Therefore, it is important to utilize as home backup power to reduce home electricity charges. In this paper, we propose a new EV battery demand/response control method, which consists of three items; a new Electric Vehicle (EV) batteries ownership virtualization technique realized by “deposited power concept”, a huge virtual battery pool to enable charge/discharge at any time, and a genetic algorithm to control demand/supply of EV batteries. Center controller named EVNO (Energy Virtual Network Operator) has a huge virtual battery pool which is aggregated by “deposited power” of each EV, and controls demand/supply of each EV by the genetic algorithm. Since EVNO controls the deposited power among their EV batteries, EV users lose ownership of the deposited electric power in their EV batteries. At this time, EV owner does not use the electric power in his EV physically. The computer simulation result shows that the proposed method can reduce electricity charges by average 11%, and can reduce power demand curve by average 13% per day compared to conventional scheme under the real-time pricing (RTP).</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"7 ","pages":"Pages 101-106"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2014.05.036","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671614000377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Electric Vehicle (EV) battery is large capacity, which is equivalent to two days of home power consumption, and cheaper than household battery. Therefore, it is important to utilize as home backup power to reduce home electricity charges. In this paper, we propose a new EV battery demand/response control method, which consists of three items; a new Electric Vehicle (EV) batteries ownership virtualization technique realized by “deposited power concept”, a huge virtual battery pool to enable charge/discharge at any time, and a genetic algorithm to control demand/supply of EV batteries. Center controller named EVNO (Energy Virtual Network Operator) has a huge virtual battery pool which is aggregated by “deposited power” of each EV, and controls demand/supply of each EV by the genetic algorithm. Since EVNO controls the deposited power among their EV batteries, EV users lose ownership of the deposited electric power in their EV batteries. At this time, EV owner does not use the electric power in his EV physically. The computer simulation result shows that the proposed method can reduce electricity charges by average 11%, and can reduce power demand curve by average 13% per day compared to conventional scheme under the real-time pricing (RTP).