{"title":"Determination of dynamic material properties using laser measurement technique in split Hopkinson pressure bar","authors":"S. Mirshafiee, M. Ashrafi, E. Mousavi","doi":"10.1177/03093247231152501","DOIUrl":null,"url":null,"abstract":"The split Hopkinson pressure bar (SHPB) is a commonly used technique to measure the stress-strain of materials at high strain rate. Using the strain records in the input and output bars, the average stress-strain and strain rate in the sample can be calculated by SHPB formulas based on the one-dimensional wave propagation theory. The accuracy of a SHPB test is based on this assumption. In this paper, first a laser measuring system is designed, implemented, and calibrated in order to obtain the dynamic properties of different materials using split Hopkinson pressure bar test. In this method which is a non-contact one, the displacements of bar/sample interfaces are measured directly using a laser extensometer technique, by using the provided equations, in addition to the strain, the stress of the tested sample can be calculated. Moreover, the operation of the method is evaluated using numerical simulation. Aluminum 7075 and copper C10200 samples were studied to evaluate the implemented measurement method. The comparison with other measurement methods shows good agreement of numerical and experimental results. Moreover, since the one-dimensional wave propagation is not used directly in this method, we show the proposed method can be used even with shorter pressure bars which can reduce the cost of manufacturing and maintenance of the SHPB apparatus.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247231152501","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The split Hopkinson pressure bar (SHPB) is a commonly used technique to measure the stress-strain of materials at high strain rate. Using the strain records in the input and output bars, the average stress-strain and strain rate in the sample can be calculated by SHPB formulas based on the one-dimensional wave propagation theory. The accuracy of a SHPB test is based on this assumption. In this paper, first a laser measuring system is designed, implemented, and calibrated in order to obtain the dynamic properties of different materials using split Hopkinson pressure bar test. In this method which is a non-contact one, the displacements of bar/sample interfaces are measured directly using a laser extensometer technique, by using the provided equations, in addition to the strain, the stress of the tested sample can be calculated. Moreover, the operation of the method is evaluated using numerical simulation. Aluminum 7075 and copper C10200 samples were studied to evaluate the implemented measurement method. The comparison with other measurement methods shows good agreement of numerical and experimental results. Moreover, since the one-dimensional wave propagation is not used directly in this method, we show the proposed method can be used even with shorter pressure bars which can reduce the cost of manufacturing and maintenance of the SHPB apparatus.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).