Characterization of Clay Materials from Ivory Coast for Their Use as Adsorbents for Wastewater Treatment

Lucas Moses Kouadio, S. Lebouachera, S. Blanc, J. Sei, C. Miqueu, F. Pannier, H. Martínez
{"title":"Characterization of Clay Materials from Ivory Coast for Their Use as Adsorbents for Wastewater Treatment","authors":"Lucas Moses Kouadio, S. Lebouachera, S. Blanc, J. Sei, C. Miqueu, F. Pannier, H. Martínez","doi":"10.4236/jmmce.2022.104023","DOIUrl":null,"url":null,"abstract":"In order to contribute to the valorisation of the clay materials of Ivory Coast in the depollution of wastewater, the physicochemical and mineralogical characterization of three clay samples taken in Agboville (AGB), Bingerville (BIN) and Katiola (KAT) was carried out. The objective of this work was to com-pare the properties of the clays in order to identify the one that is likely to have interesting adsorptive capacities to clean up contaminated water. These clays were studied by chemical analysis, X-ray diffraction, scanning electron microscopy and thermal analysis. In addition, their specific surface areas and cation exchange capacities were determined. The AGB clay is composed of 75.51% kaolinite, 14.20% illite and 9.26% quartz. The BIN clay contains 52.21% kaolinite, 6.23% illite, 17.50% quartz and 15.71% goethite. As for the KAT clay, it contains 48.08% kaolinite, 3.55% illite, 20.14% smectite, 6.11% quartz and 16.86% goethite. Their thermal behavior and microstructure are in agreement with their mineralogy. The measured specific surface areas and cation exchange capacities are consistent with literature values. The KAT clay has the highest specific surface and cation exchange capacity. In the light of the results obtained, the KAT clay appears to be more effective in depolluting water than the BIN and AGB clays.","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Minerals and Materials Characterization and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jmmce.2022.104023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In order to contribute to the valorisation of the clay materials of Ivory Coast in the depollution of wastewater, the physicochemical and mineralogical characterization of three clay samples taken in Agboville (AGB), Bingerville (BIN) and Katiola (KAT) was carried out. The objective of this work was to com-pare the properties of the clays in order to identify the one that is likely to have interesting adsorptive capacities to clean up contaminated water. These clays were studied by chemical analysis, X-ray diffraction, scanning electron microscopy and thermal analysis. In addition, their specific surface areas and cation exchange capacities were determined. The AGB clay is composed of 75.51% kaolinite, 14.20% illite and 9.26% quartz. The BIN clay contains 52.21% kaolinite, 6.23% illite, 17.50% quartz and 15.71% goethite. As for the KAT clay, it contains 48.08% kaolinite, 3.55% illite, 20.14% smectite, 6.11% quartz and 16.86% goethite. Their thermal behavior and microstructure are in agreement with their mineralogy. The measured specific surface areas and cation exchange capacities are consistent with literature values. The KAT clay has the highest specific surface and cation exchange capacity. In the light of the results obtained, the KAT clay appears to be more effective in depolluting water than the BIN and AGB clays.
科特迪瓦粘土材料作为废水处理吸附剂的特性研究
为了促进科特迪瓦粘土材料在废水净化中的价值,对在Agboville (AGB), Bingerville (BIN)和Katiola (KAT)采集的三个粘土样品进行了物理化学和矿物学表征。这项工作的目的是比较粘土的性质,以确定一种可能有有趣的吸附能力来清理污染的水。通过化学分析、x射线衍射、扫描电镜和热分析对这些粘土进行了研究。测定了它们的比表面积和阳离子交换容量。AGB粘土由高岭石75.51%、伊利石14.20%、石英9.26%组成。BIN粘土含高岭石52.21%,伊利石6.23%,石英17.50%,针铁矿15.71%。其中高岭石48.08%,伊利石3.55%,蒙脱石20.14%,石英6.11%,针铁矿16.86%。它们的热行为和微观结构与矿物学基本一致。测定的比表面积和阳离子交换容量与文献值一致。KAT粘土具有最高的比表面积和阳离子交换容量。根据所获得的结果,KAT粘土似乎比BIN和AGB粘土更有效地去污水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信