Finite point configurations in products of thick Cantor sets and a robust nonlinear Newhouse Gap Lemma

IF 0.6 3区 数学 Q3 MATHEMATICS
Alex McDonald, K. Taylor
{"title":"Finite point configurations in products of thick Cantor sets and a robust nonlinear Newhouse Gap Lemma","authors":"Alex McDonald, K. Taylor","doi":"10.1017/S0305004123000130","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we prove that the set \n$\\{|x^1-x^2|,\\dots,|x^k-x^{k+1}|\\,{:}\\,x^i\\in E\\}$\n has non-empty interior in \n$\\mathbb{R}^k$\n when \n$E\\subset \\mathbb{R}^2$\n is a Cartesian product of thick Cantor sets \n$K_1,K_2\\subset\\mathbb{R}$\n . We also prove more general results where the distance map \n$|x-y|$\n is replaced by a function \n$\\phi(x,y)$\n satisfying mild assumptions on its partial derivatives. In the process, we establish a nonlinear version of the classic Newhouse Gap Lemma, and show that if \n$K_1,K_2, \\phi$\n are as above then there exists an open set S so that \n$\\bigcap_{x \\in S} \\phi(x,K_1\\times K_2)$\n has non-empty interior.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"46 1","pages":"285 - 301"},"PeriodicalIF":0.6000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000130","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Abstract In this paper we prove that the set $\{|x^1-x^2|,\dots,|x^k-x^{k+1}|\,{:}\,x^i\in E\}$ has non-empty interior in $\mathbb{R}^k$ when $E\subset \mathbb{R}^2$ is a Cartesian product of thick Cantor sets $K_1,K_2\subset\mathbb{R}$ . We also prove more general results where the distance map $|x-y|$ is replaced by a function $\phi(x,y)$ satisfying mild assumptions on its partial derivatives. In the process, we establish a nonlinear version of the classic Newhouse Gap Lemma, and show that if $K_1,K_2, \phi$ are as above then there exists an open set S so that $\bigcap_{x \in S} \phi(x,K_1\times K_2)$ has non-empty interior.
厚Cantor集积的有限点构型及鲁棒非线性Newhouse Gap引理
摘要本文证明了当$E\subset \mathbb{R}^2$是厚康托集$K_1,K_2\subset\mathbb{R}$的笛卡尔积时,集合$\{|x^1-x^2|,\dots,|x^k-x^{k+1}|\,{:}\,x^i\in E\}$在$\mathbb{R}^k$中具有非空内。我们还证明了更一般的结果,其中距离图$|x-y|$被一个满足其偏导数温和假设的函数$\phi(x,y)$所取代。在此过程中,我们建立了经典Newhouse Gap引理的一个非线性版本,并证明了如果$K_1,K_2, \phi$如上所述,则存在一个开集S,使得$\bigcap_{x \in S} \phi(x,K_1\times K_2)$具有非空的内部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信