Configurations polygonales en équilibre relatif

Dominique Bang, Badaoui Elmabsout
{"title":"Configurations polygonales en équilibre relatif","authors":"Dominique Bang,&nbsp;Badaoui Elmabsout","doi":"10.1016/S1620-7742(01)01334-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the <span><math><mtext>N</mtext></math></span>-body (<span><math><mtext>N=p·n</mtext></math></span>) problem (where the bodies are submitted to their mutual attractions derived from a potential of the type <span><math><mtext>V(r)=Cte/r</mtext><msup><mi></mi><mn>2α</mn></msup></math></span> where <span><math><mtext>0⩽α&lt;∞</mtext></math></span>). We prove the existence of relative equilibrium configurations (denoted C.E.R.) when the ponctual bodies are at the vertices of <span><math><mtext>p</mtext></math></span> regular polygons centered around a given mass <span><math><mtext>M</mtext></math></span>, the masses being equal on the vertices of each polygon. In the Newtonian case (<span><math><mtext>α=1/2</mtext></math></span>) we enrich the last result for values of n lower or equal than <span><math><mtext>472</mtext></math></span>.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 4","pages":"Pages 243-248"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01334-4","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We consider the N-body (N=p·n) problem (where the bodies are submitted to their mutual attractions derived from a potential of the type V(r)=Cte/r where 0⩽α<∞). We prove the existence of relative equilibrium configurations (denoted C.E.R.) when the ponctual bodies are at the vertices of p regular polygons centered around a given mass M, the masses being equal on the vertices of each polygon. In the Newtonian case (α=1/2) we enrich the last result for values of n lower or equal than 472.

相对平衡下的多边形结构
我们考虑N-体(N=p·N)问题(其中体服从于由V(r)=Cte/r2α型势导出的相互吸引,其中0≤α<∞)。我们证明了在以给定质量M为中心的p个正多边形的顶点上,当每个正多边形顶点上的质量相等时,相对平衡构型的存在性。在牛顿的情况下(α=1/2),当n值小于或等于472时,我们充实最后的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信