{"title":"Configurations polygonales en équilibre relatif","authors":"Dominique Bang, Badaoui Elmabsout","doi":"10.1016/S1620-7742(01)01334-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the <span><math><mtext>N</mtext></math></span>-body (<span><math><mtext>N=p·n</mtext></math></span>) problem (where the bodies are submitted to their mutual attractions derived from a potential of the type <span><math><mtext>V(r)=Cte/r</mtext><msup><mi></mi><mn>2α</mn></msup></math></span> where <span><math><mtext>0⩽α<∞</mtext></math></span>). We prove the existence of relative equilibrium configurations (denoted C.E.R.) when the ponctual bodies are at the vertices of <span><math><mtext>p</mtext></math></span> regular polygons centered around a given mass <span><math><mtext>M</mtext></math></span>, the masses being equal on the vertices of each polygon. In the Newtonian case (<span><math><mtext>α=1/2</mtext></math></span>) we enrich the last result for values of n lower or equal than <span><math><mtext>472</mtext></math></span>.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 4","pages":"Pages 243-248"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01334-4","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We consider the -body () problem (where the bodies are submitted to their mutual attractions derived from a potential of the type where ). We prove the existence of relative equilibrium configurations (denoted C.E.R.) when the ponctual bodies are at the vertices of regular polygons centered around a given mass , the masses being equal on the vertices of each polygon. In the Newtonian case () we enrich the last result for values of n lower or equal than .