CBIR by cascading features & SVM

Savita, Sandeep Jain, K. K. Paliwal
{"title":"CBIR by cascading features & SVM","authors":"Savita, Sandeep Jain, K. K. Paliwal","doi":"10.1109/CCAA.2017.8229778","DOIUrl":null,"url":null,"abstract":"This paper investigates different methods of representing shape and texture in content-based image retrieval. We have combined five features set in our work and these are trained and classified with SVM (support vector machine) classifier which makes use of machine learning technology. We combined histogram features, texture features (GLCM features), wavelet features, Gabor features, and statistical features, which makes use of global and local features. A database of 1000 images (Wang database) of 10 different classes is used to extract all features vector for each image and stored in our database so that SVM can use it to classify the query image. By using these features set, we are able to reach up to 97.53% classification accuracy.","PeriodicalId":6627,"journal":{"name":"2017 International Conference on Computing, Communication and Automation (ICCCA)","volume":"1 1","pages":"93-97"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Communication and Automation (ICCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAA.2017.8229778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper investigates different methods of representing shape and texture in content-based image retrieval. We have combined five features set in our work and these are trained and classified with SVM (support vector machine) classifier which makes use of machine learning technology. We combined histogram features, texture features (GLCM features), wavelet features, Gabor features, and statistical features, which makes use of global and local features. A database of 1000 images (Wang database) of 10 different classes is used to extract all features vector for each image and stored in our database so that SVM can use it to classify the query image. By using these features set, we are able to reach up to 97.53% classification accuracy.
基于级联特征和支持向量机的CBIR
本文研究了基于内容的图像检索中形状和纹理的不同表示方法。我们在工作中结合了五个特征集,并使用机器学习技术的SVM(支持向量机)分类器对这些特征集进行训练和分类。我们将直方图特征、纹理特征(GLCM特征)、小波特征、Gabor特征和统计特征结合起来,充分利用了全局特征和局部特征。使用10个不同类别的1000张图像数据库(Wang数据库)提取每张图像的所有特征向量并存储在我们的数据库中,以便SVM使用它对查询图像进行分类。通过使用这些特征集,我们可以达到97.53%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信