Compressed sensing in spatial MIMO channels

Wei Lu, Yingzhuang Liu, Desheng Wang
{"title":"Compressed sensing in spatial MIMO channels","authors":"Wei Lu, Yingzhuang Liu, Desheng Wang","doi":"10.1109/WIRELESSVITAE.2011.5940850","DOIUrl":null,"url":null,"abstract":"Many wireless channels exhibit sparse multipath feature in practice. In this paper, we analyze the sparsity of sparse MIMO channel and the leakage effect with fixed Fourier basis in the spatial/angular domain. In order to enhance the sparsity of the MIMO angular channels we propose an optimized overcomplete Fourier basis dictionary, which is obtained by a sparsity criterion, to represent the signals with the best basis. By converting the compressed sensing from multiple measurement vectors to a single measurement vector, the reconstruction of the MIMO channel is simplified and makes better use of the sparsity of the MIMO angular channels. Simulations show that with the optimized basis dictionary the leakage effect is reduced and the orthogonal matching pursuit algorithm can reconstruct the MIMO channel effectively with the optimized Fourier basis.","PeriodicalId":68078,"journal":{"name":"无线互联科技","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线互联科技","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/WIRELESSVITAE.2011.5940850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Many wireless channels exhibit sparse multipath feature in practice. In this paper, we analyze the sparsity of sparse MIMO channel and the leakage effect with fixed Fourier basis in the spatial/angular domain. In order to enhance the sparsity of the MIMO angular channels we propose an optimized overcomplete Fourier basis dictionary, which is obtained by a sparsity criterion, to represent the signals with the best basis. By converting the compressed sensing from multiple measurement vectors to a single measurement vector, the reconstruction of the MIMO channel is simplified and makes better use of the sparsity of the MIMO angular channels. Simulations show that with the optimized basis dictionary the leakage effect is reduced and the orthogonal matching pursuit algorithm can reconstruct the MIMO channel effectively with the optimized Fourier basis.
空间MIMO信道中的压缩感知
在实际应用中,许多无线信道都表现出稀疏的多径特性。本文在空间/角域分析了稀疏MIMO信道的稀疏性和固定傅里叶基的泄漏效应。为了提高MIMO角信道的稀疏性,提出了一种优化的过完备傅立叶基字典,该字典通过稀疏性准则得到,用来表示具有最佳基的信号。通过将压缩感知从多个测量向量转换为单个测量向量,简化了MIMO信道的重构,更好地利用了MIMO角信道的稀疏性。仿真结果表明,优化后的基字典能有效降低泄漏效应,正交匹配追踪算法能有效地利用优化后的傅里叶基重构MIMO信道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
19945
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信