Geodesic complexity of homogeneous Riemannian manifolds

IF 0.6 3区 数学 Q3 MATHEMATICS
Stephan Mescher, Maximilian Stegemeyer
{"title":"Geodesic complexity of homogeneous Riemannian manifolds","authors":"Stephan Mescher, Maximilian Stegemeyer","doi":"10.2140/agt.2023.23.2221","DOIUrl":null,"url":null,"abstract":"We study the geodesic motion planning problem for complete Riemannian manifolds and investigate their geodesic complexity, an integer-valued isometry invariant introduced by D. Recio-Mitter. Using methods from Riemannian geometry, we establish new lower and upper bounds on geodesic complexity and compute its value for certain classes of examples with a focus on homogeneous Riemannian manifolds. Methodically, we study properties of stratifications of cut loci and use results on their structures for certain homogeneous manifolds obtained by T. Sakai and others.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"57 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study the geodesic motion planning problem for complete Riemannian manifolds and investigate their geodesic complexity, an integer-valued isometry invariant introduced by D. Recio-Mitter. Using methods from Riemannian geometry, we establish new lower and upper bounds on geodesic complexity and compute its value for certain classes of examples with a focus on homogeneous Riemannian manifolds. Methodically, we study properties of stratifications of cut loci and use results on their structures for certain homogeneous manifolds obtained by T. Sakai and others.
齐次黎曼流形的测地线复杂度
研究了完全黎曼流形的测地线运动规划问题,研究了由D. Recio-Mitter引入的整数值等距不变量测地线复杂度。本文以齐次黎曼流形为研究对象,利用黎曼几何的方法,建立了新的测地线复杂度的下界和上界,并计算了其值。系统地研究了切位点的分层性质,并将T. Sakai等人得到的切位点结构的结果应用于某些齐次流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信