Fast inline inspection by Neural Network Based Filtered Backprojection: Application to apple inspection

Eline Janssens , Luis F. Alves Pereira , Jan De Beenhouwer , Ing Ren Tsang , Mattias Van Dael , Pieter Verboven , Bart Nicolaï , Jan Sijbers
{"title":"Fast inline inspection by Neural Network Based Filtered Backprojection: Application to apple inspection","authors":"Eline Janssens ,&nbsp;Luis F. Alves Pereira ,&nbsp;Jan De Beenhouwer ,&nbsp;Ing Ren Tsang ,&nbsp;Mattias Van Dael ,&nbsp;Pieter Verboven ,&nbsp;Bart Nicolaï ,&nbsp;Jan Sijbers","doi":"10.1016/j.csndt.2016.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Speed is an important parameter of an inspection system. Inline computed tomography systems exist but are generally expensive. Moreover, their throughput is limited by the speed of the reconstruction algorithm. In this work, we propose a Neural Network-based Hilbert transform Filtered Backprojection (NN-hFBP) method to reconstruct objects in an inline scanning environment in a fast and accurate way. Experiments based on apple X-ray scans show that the NN-hFBP method allows to reconstruct images with a substantially better tradeoff between image quality and reconstruction time.</p></div>","PeriodicalId":100221,"journal":{"name":"Case Studies in Nondestructive Testing and Evaluation","volume":"6 ","pages":"Pages 14-20"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csndt.2016.03.003","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Nondestructive Testing and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214657116300041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Speed is an important parameter of an inspection system. Inline computed tomography systems exist but are generally expensive. Moreover, their throughput is limited by the speed of the reconstruction algorithm. In this work, we propose a Neural Network-based Hilbert transform Filtered Backprojection (NN-hFBP) method to reconstruct objects in an inline scanning environment in a fast and accurate way. Experiments based on apple X-ray scans show that the NN-hFBP method allows to reconstruct images with a substantially better tradeoff between image quality and reconstruction time.

基于过滤反投影的神经网络快速内联检测:在苹果检测中的应用
速度是检测系统的一个重要参数。内联计算机断层扫描系统已经存在,但通常价格昂贵。此外,它们的吞吐量受到重构算法速度的限制。在这项工作中,我们提出了一种基于神经网络的Hilbert变换滤波反向投影(NN-hFBP)方法,以快速准确的方式重建内联扫描环境中的物体。基于苹果x射线扫描的实验表明,NN-hFBP方法可以在图像质量和重建时间之间取得更好的平衡,从而重建图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信