{"title":"Analysis of the Efficiency of Technologies for Extraction Carbon Dioxide from Combustion Products","authors":"V. Sednin, R. S. Ignatovich","doi":"10.21122/1029-7448-2022-65-6-524-538","DOIUrl":null,"url":null,"abstract":"The main purpose of the article is to compare and analyze existing technologies for extracting carbon dioxide from combustion products in relation to mini-CHP plants operating on local fuels. The article presents a brief overview of the main technical features of the implementation of carbon dioxide extraction technologies from gas mixtures. The specific features and limitations for each of the methods are shown. Mathematical modeling of technological processes of adsorption, physical and chemical absorption is carried out on the basis of Aspen Hysys and Aspen Adsorption software packages. When modeling absorption processes, the composition of combustion products characteristic of the actual operating conditions of an energy source on wood chips was considered, while for the adsorption process, the composition of combustion products was simulated by a binary mixture of carbon dioxide and nitrogen with a molar content of 11 and 89 %, respectively. The results of numerical research that were obtained have shown that the highest degree of carbon dioxide extraction from combustion products is 97 %, and it is achieved in the optimal mode of implementation of chemical absorption technology. With the same method, the highest degree of purity of the resulting carbon dioxide is observed, viz. 86 % taking into account water vapor and 99 % if it is dry. The least effective technology for extracting carbon dioxide was the method of physical absorption in a fixed bed, in which the degree of purity of the resulting dry carbon dioxide was 79 %. Therefore, for practical use in the deep utilization of combustion products of mini-CHP plants operating on local fuels, to obtain carbon dioxide with a low content of impurities, it is necessary to apply the method of chemical absorption. The use of physical absorption technology in a fixed bed can be used to reduce energy source emissions or in cases where the degree of purity of carbon dioxide does not matter.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2022-65-6-524-538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1
Abstract
The main purpose of the article is to compare and analyze existing technologies for extracting carbon dioxide from combustion products in relation to mini-CHP plants operating on local fuels. The article presents a brief overview of the main technical features of the implementation of carbon dioxide extraction technologies from gas mixtures. The specific features and limitations for each of the methods are shown. Mathematical modeling of technological processes of adsorption, physical and chemical absorption is carried out on the basis of Aspen Hysys and Aspen Adsorption software packages. When modeling absorption processes, the composition of combustion products characteristic of the actual operating conditions of an energy source on wood chips was considered, while for the adsorption process, the composition of combustion products was simulated by a binary mixture of carbon dioxide and nitrogen with a molar content of 11 and 89 %, respectively. The results of numerical research that were obtained have shown that the highest degree of carbon dioxide extraction from combustion products is 97 %, and it is achieved in the optimal mode of implementation of chemical absorption technology. With the same method, the highest degree of purity of the resulting carbon dioxide is observed, viz. 86 % taking into account water vapor and 99 % if it is dry. The least effective technology for extracting carbon dioxide was the method of physical absorption in a fixed bed, in which the degree of purity of the resulting dry carbon dioxide was 79 %. Therefore, for practical use in the deep utilization of combustion products of mini-CHP plants operating on local fuels, to obtain carbon dioxide with a low content of impurities, it is necessary to apply the method of chemical absorption. The use of physical absorption technology in a fixed bed can be used to reduce energy source emissions or in cases where the degree of purity of carbon dioxide does not matter.
期刊介绍:
The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.