Infinite 𝑝-adic random matrices and ergodic decomposition of 𝑝-adic Hua measures

T. Assiotis
{"title":"Infinite 𝑝-adic random matrices and ergodic decomposition of 𝑝-adic Hua measures","authors":"T. Assiotis","doi":"10.1090/tran/8526","DOIUrl":null,"url":null,"abstract":"Neretin constructed an analogue of the Hua measures on the infinite $p$-adic matrices $Mat\\left(\\mathbb{N},\\mathbb{Q}_p\\right)$. Bufetov and Qiu classified the ergodic measures on $Mat\\left(\\mathbb{N},\\mathbb{Q}_p\\right)$ that are invariant under the natural action of $GL(\\infty,\\mathbb{Z}_p)\\times GL(\\infty,\\mathbb{Z}_p)$. In this paper we solve the problem of ergodic decomposition for the $p$-adic Hua measures introduced by Neretin. We prove that the probability measure governing the ergodic decomposition has an explicit expression which identifies it with a Hall-Littlewood measure on partitions. Our arguments involve certain Markov chains.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Neretin constructed an analogue of the Hua measures on the infinite $p$-adic matrices $Mat\left(\mathbb{N},\mathbb{Q}_p\right)$. Bufetov and Qiu classified the ergodic measures on $Mat\left(\mathbb{N},\mathbb{Q}_p\right)$ that are invariant under the natural action of $GL(\infty,\mathbb{Z}_p)\times GL(\infty,\mathbb{Z}_p)$. In this paper we solve the problem of ergodic decomposition for the $p$-adic Hua measures introduced by Neretin. We prove that the probability measure governing the ergodic decomposition has an explicit expression which identifies it with a Hall-Littlewood measure on partitions. Our arguments involve certain Markov chains.
无穷𝑝-adic随机矩阵与𝑝-adic华测度的遍历分解
Neretin在无限$p$ -adic矩阵$Mat\left(\mathbb{N},\mathbb{Q}_p\right)$上构造了Hua测度的类比。Bufetov和Qiu对$Mat\left(\mathbb{N},\mathbb{Q}_p\right)$上在$GL(\infty,\mathbb{Z}_p)\times GL(\infty,\mathbb{Z}_p)$自然作用下不变的遍历测度进行了分类。本文解决了Neretin引入的$p$ -adic - Hua测度的遍历分解问题。我们证明了控制遍历分解的概率测度有一个显式表达式,它与分区上的Hall-Littlewood测度相一致。我们的论证涉及一定的马尔可夫链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信