Three-dimensional numerical simulation of velocity field distribution in an oxy-coal combustor-melter-separator furnace

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING
Yaou Shen, K. Zhao, Zheng Kong, Yu-zhu Zhang, Yan Shi, Y. Qi
{"title":"Three-dimensional numerical simulation of velocity field distribution in an oxy-coal combustor-melter-separator furnace","authors":"Yaou Shen, K. Zhao, Zheng Kong, Yu-zhu Zhang, Yan Shi, Y. Qi","doi":"10.1051/metal/2021066","DOIUrl":null,"url":null,"abstract":"In view of the influence of tuyere layout change on velocity field in oxy-coal combustor-melter-separator furnace, three-dimensional numerical simulation method was used to compare the distribution of velocity field in the furnace under different tuyere layout. The purpose is to explore the influence of the velocity distribution on the molten pool flow in the process of multi-tuyere injection. It is shown that the maximum velocity of the upper and lower tuyeres is 60 m/s and 50 m/s. And the change of tuyere has a significant effect on the velocity distribution in the molten pool, and the sudden change of velocity near the tuyere will trigger a certain scale of gyratory zone. In addition, the change of tuyere arrangement will result in the concentration of velocity distribution in the molten pool and the increase of flow dead zone, while the change of tuyere spacing will not only promote the increase of flow dead zone, but also reduce the velocity distribution area.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"19 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021066","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the influence of tuyere layout change on velocity field in oxy-coal combustor-melter-separator furnace, three-dimensional numerical simulation method was used to compare the distribution of velocity field in the furnace under different tuyere layout. The purpose is to explore the influence of the velocity distribution on the molten pool flow in the process of multi-tuyere injection. It is shown that the maximum velocity of the upper and lower tuyeres is 60 m/s and 50 m/s. And the change of tuyere has a significant effect on the velocity distribution in the molten pool, and the sudden change of velocity near the tuyere will trigger a certain scale of gyratory zone. In addition, the change of tuyere arrangement will result in the concentration of velocity distribution in the molten pool and the increase of flow dead zone, while the change of tuyere spacing will not only promote the increase of flow dead zone, but also reduce the velocity distribution area.
氧煤燃烧室-熔体-分离器炉内速度场分布的三维数值模拟
针对全氧煤燃烧器-熔体-分离器炉内风口布置变化对炉内速度场的影响,采用三维数值模拟的方法对不同风口布置下炉内速度场的分布进行了比较。目的是探讨多风口喷射过程中速度分布对熔池流动的影响。结果表明,上下风口的最大流速分别为60 m/s和50 m/s。风口的变化对熔池内的速度分布有显著的影响,风口附近速度的突然变化会引发一定规模的回转区。此外,风口布置的改变会导致熔池内速度分布的集中和流动死区增大,而风口间距的改变不仅会促进流动死区增大,而且会使速度分布面积减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信