Detection of hidden periodicities in models with discrete time and long range dependent random noise

A. Ivanov, I. V. Orlovskyi
{"title":"Detection of hidden periodicities in models with discrete time and long range dependent random noise","authors":"A. Ivanov, I. V. Orlovskyi","doi":"10.17721/1812-5409.2023/1.7","DOIUrl":null,"url":null,"abstract":"Trigonometric regression models take a special place among various models of nonlinear regression analysis and signal processing theory. The problem of estimating the parameters of such models is called the problem of detecting hidden periodicities, and it has many applications in natural and technical sciences. The paper is devoted to the study of the problem of detecting hidden periodicities in the case when we observe only one harmonic oscillation with discrete time, where random noise is a local functional of Gaussian random sequence with singular spectrum. In particular, the random sequence in the model can be strongly dependent. For estimation of unknown parameters the periodogram estimator is chosen. Sufficient conditions of the consistency of the amplitude and angular frequency periodogram estimator of the model described above are obtained in the paper. The proof of Lemmas 1 and 2 gave an important asymptotic properties of the random noise functional related to the periodogram estimator which necessary for the proof of the main results. Series expansion of random noise in terms of Hermite polynomials and the Diagram formula are main tools that were used to obtain this lemmas.","PeriodicalId":33822,"journal":{"name":"Visnik Kiivs''kij nacional''nij universitet imeni Tarasa Sevcenka Istoria","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kiivs''kij nacional''nij universitet imeni Tarasa Sevcenka Istoria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/1812-5409.2023/1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Trigonometric regression models take a special place among various models of nonlinear regression analysis and signal processing theory. The problem of estimating the parameters of such models is called the problem of detecting hidden periodicities, and it has many applications in natural and technical sciences. The paper is devoted to the study of the problem of detecting hidden periodicities in the case when we observe only one harmonic oscillation with discrete time, where random noise is a local functional of Gaussian random sequence with singular spectrum. In particular, the random sequence in the model can be strongly dependent. For estimation of unknown parameters the periodogram estimator is chosen. Sufficient conditions of the consistency of the amplitude and angular frequency periodogram estimator of the model described above are obtained in the paper. The proof of Lemmas 1 and 2 gave an important asymptotic properties of the random noise functional related to the periodogram estimator which necessary for the proof of the main results. Series expansion of random noise in terms of Hermite polynomials and the Diagram formula are main tools that were used to obtain this lemmas.
具有离散时间和长程相关随机噪声的模型中隐含周期性的检测
三角回归模型在非线性回归分析和信号处理理论的各种模型中占有特殊的地位。估计这类模型的参数的问题被称为隐藏周期的检测问题,它在自然科学和技术科学中有许多应用。本文研究了在只观察一个离散时间谐波振荡的情况下,随机噪声是奇异谱高斯随机序列的局部泛函时隐藏周期的检测问题。特别是,模型中的随机序列可以是强相关的。对于未知参数的估计,选择周期图估计器。本文给出了上述模型的幅值周期图估计和角频率周期图估计相合的充分条件。引理1和2的证明给出了与周期图估计量相关的随机噪声泛函的一个重要渐近性质,这是证明主要结果所必需的。随机噪声的埃尔米特多项式级数展开式和图解公式是得到该引理的主要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信