Performance and Security Strength Trade-Off in Machine Learning Based Biometric Authentication Systems

Koosha Sadeghi, Ayan Banerjee, Javad Sohankar, S. Gupta
{"title":"Performance and Security Strength Trade-Off in Machine Learning Based Biometric Authentication Systems","authors":"Koosha Sadeghi, Ayan Banerjee, Javad Sohankar, S. Gupta","doi":"10.1109/ICMLA.2017.00-12","DOIUrl":null,"url":null,"abstract":"In Biometric Authentication Systems (BAS), the variability amongst population biometric data ensures distinctiveness, and helps minimizing false acceptance of non-subject data. However, higher variability implies temporal variations for a given subject, which can potentially reject subject data. Such variations are suppressed using feature extraction and Machine Learning (ML) techniques for improving the performance, but also reduce the adversary’s effort in breaking the system (security strength) using forged data. Typically for BAS design, performance and security strength are evaluated in isolation using experimental analysis. This research provides an analytical approach to evaluate the BAS performance and strength, and their trade-off, by modeling the biometric data, and studying the effect of feature extraction and ML configurations on processing the data. Experimental analysis on 106 subjects’ brain signal validates the analytical methodology results.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"8 1","pages":"1045-1048"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In Biometric Authentication Systems (BAS), the variability amongst population biometric data ensures distinctiveness, and helps minimizing false acceptance of non-subject data. However, higher variability implies temporal variations for a given subject, which can potentially reject subject data. Such variations are suppressed using feature extraction and Machine Learning (ML) techniques for improving the performance, but also reduce the adversary’s effort in breaking the system (security strength) using forged data. Typically for BAS design, performance and security strength are evaluated in isolation using experimental analysis. This research provides an analytical approach to evaluate the BAS performance and strength, and their trade-off, by modeling the biometric data, and studying the effect of feature extraction and ML configurations on processing the data. Experimental analysis on 106 subjects’ brain signal validates the analytical methodology results.
基于机器学习的生物识别认证系统的性能和安全强度权衡
在生物识别认证系统(BAS)中,群体生物识别数据之间的可变性确保了独特性,并有助于最大限度地减少对非受试者数据的错误接受。然而,较高的可变性意味着给定主题的时间变化,这可能会拒绝主题数据。使用特征提取和机器学习(ML)技术来抑制这种变化以提高性能,但也减少了对手使用伪造数据破坏系统(安全强度)的努力。通常在BAS设计中,性能和安全强度是通过实验分析进行隔离评估的。本研究通过对生物特征数据进行建模,并研究特征提取和机器学习配置对数据处理的影响,为评估BAS的性能和强度及其权衡提供了一种分析方法。对106名受试者的脑信号进行实验分析,验证了分析方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信