Pemetaan Jumlah Property Crime di Provinsi Jawa Timur Menggunakan Metode Geographically Weighted Negative Binomial Regression (GWNBR) dan Geographically Weighted Poisson Regression (GWPR)

Bagas Wahyu Yoga Priambodo, Irhamah Irhamah
{"title":"Pemetaan Jumlah Property Crime di Provinsi Jawa Timur Menggunakan Metode Geographically Weighted Negative Binomial Regression (GWNBR) dan Geographically Weighted Poisson Regression (GWPR)","authors":"Bagas Wahyu Yoga Priambodo, Irhamah Irhamah","doi":"10.12962/j27213862.v2i2.6818","DOIUrl":null,"url":null,"abstract":"Kriminal merupakan suatu kegiatan yang melanggar hukum. Ada beberapa faktor yang mempengaruhi para kriminal melakukan tindakan kejahatan antara lain  kemiskinan, kesempatan kerja, dan karakter pelaku yang melakukan kejahatan. Selain itu ada pula faktor lain yang mempengaruhi timbulnya kejahatan yaitu kepadatan penduduk, jumlah patroli polisi, keadaan jalan dan lingkungan, frekuensi ronda siskamling, dan faktor lainnya. Property crime merupakan kategori kejahatan yang termasuk di dalamnya yaitu pencurian, pengambilan sesuatu yang melanggar hukum, perampokan, kejahatan dengan pembakaran, dan perusakan properti. Seringkali kejadian kriminalitas akan saling berdampak dari satu wilayah ke wilayah yang lainnya. Untuk menyelesaikan kasus tersebut diperlukan suatu pemodelan dengan metode spasial kerena memperhatikan kondisi geografis yang ada di provinsi Jawa Timur. Pemodelan dengan memperhatikan faktor spasial menggunakan GWNBR dan GWPR, dimana setiap wilayah pasti memiliki kondisi geografis yang berbeda sehingga menyebabkan adanya perbedaan jumlah Property crime antara wilayah satu dengan wilayah yang lainnya sesuai dengan karakteristik wilayah tersebut. Hasil pemodelan dengan metode GWNBR terbentuk dua kelompok kabupaten/kota menurut variabel yang berpengaruh signifikan terhadap jumlah kasus Property crime. Hasil pemodelan dengan metode GWPR menunjukkan bahwa kelompok kabupaten/kota menurut variabel yang berpengaruh signifikan terhadap jumlah kasus Property crime sebanyak 16 kelompok. Berdasarkan kriteria AIC terkecil menunjukkan bahwa metode GWNBR merupakan metode yang paling sesuai untuk memodelkan jumlah kasus Property crime setiap kabupaten/kota di Jawa Timur dibandingkan dengan metode regresi Poisson, regresi binomial negatif, dan GWPR.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inferensi Jurnal Penelitian Sosial Keagamaan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/j27213862.v2i2.6818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Kriminal merupakan suatu kegiatan yang melanggar hukum. Ada beberapa faktor yang mempengaruhi para kriminal melakukan tindakan kejahatan antara lain  kemiskinan, kesempatan kerja, dan karakter pelaku yang melakukan kejahatan. Selain itu ada pula faktor lain yang mempengaruhi timbulnya kejahatan yaitu kepadatan penduduk, jumlah patroli polisi, keadaan jalan dan lingkungan, frekuensi ronda siskamling, dan faktor lainnya. Property crime merupakan kategori kejahatan yang termasuk di dalamnya yaitu pencurian, pengambilan sesuatu yang melanggar hukum, perampokan, kejahatan dengan pembakaran, dan perusakan properti. Seringkali kejadian kriminalitas akan saling berdampak dari satu wilayah ke wilayah yang lainnya. Untuk menyelesaikan kasus tersebut diperlukan suatu pemodelan dengan metode spasial kerena memperhatikan kondisi geografis yang ada di provinsi Jawa Timur. Pemodelan dengan memperhatikan faktor spasial menggunakan GWNBR dan GWPR, dimana setiap wilayah pasti memiliki kondisi geografis yang berbeda sehingga menyebabkan adanya perbedaan jumlah Property crime antara wilayah satu dengan wilayah yang lainnya sesuai dengan karakteristik wilayah tersebut. Hasil pemodelan dengan metode GWNBR terbentuk dua kelompok kabupaten/kota menurut variabel yang berpengaruh signifikan terhadap jumlah kasus Property crime. Hasil pemodelan dengan metode GWPR menunjukkan bahwa kelompok kabupaten/kota menurut variabel yang berpengaruh signifikan terhadap jumlah kasus Property crime sebanyak 16 kelompok. Berdasarkan kriteria AIC terkecil menunjukkan bahwa metode GWNBR merupakan metode yang paling sesuai untuk memodelkan jumlah kasus Property crime setiap kabupaten/kota di Jawa Timur dibandingkan dengan metode regresi Poisson, regresi binomial negatif, dan GWPR.
犯罪是违法的。影响罪犯作恶的因素包括贫穷、就业机会和犯罪者的性格。此外,还有其他影响犯罪的因素:人口密度、警察巡逻数量、道路和环境状况、邻里风频率和其他因素。财产犯罪是犯罪的类别,包括偷窃、非法盗窃、抢劫、纵火和破坏财产。犯罪事件往往会从一个地区影响到另一个地区。考虑到东爪哇省的地理条件,需要用空间方法进行建模。通过使用GWNBR和GWPR来建模,每个区域必须有不同的地理条件,从而根据该区域的特征在一个区域和另一个区域之间存在犯罪属性的数量差异。GWNBR方法的建模结果是由两个地区/城市群体组成的,这些变量对产权率犯罪案件的数量有重大影响。GWPR方法的建模结果显示,该地区/城市集团的变量影响了16个群体的财产犯罪案件。根据最小的AIC标准,GWNBR方法是与波森回购、双宫回归法和GWPR相比,在东爪哇省每个地区的犯罪犯罪案件数量最合适的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信