Large Displacement Optical Flow from Nearest Neighbor Fields

Zhuoyuan Chen, Hailin Jin, Zhe L. Lin, Scott D. Cohen, Ying Wu
{"title":"Large Displacement Optical Flow from Nearest Neighbor Fields","authors":"Zhuoyuan Chen, Hailin Jin, Zhe L. Lin, Scott D. Cohen, Ying Wu","doi":"10.1109/CVPR.2013.316","DOIUrl":null,"url":null,"abstract":"We present an optical flow algorithm for large displacement motions. Most existing optical flow methods use the standard coarse-to-fine framework to deal with large displacement motions which has intrinsic limitations. Instead, we formulate the motion estimation problem as a motion segmentation problem. We use approximate nearest neighbor fields to compute an initial motion field and use a robust algorithm to compute a set of similarity transformations as the motion candidates for segmentation. To account for deviations from similarity transformations, we add local deformations in the segmentation process. We also observe that small objects can be better recovered using translations as the motion candidates. We fuse the motion results obtained under similarity transformations and under translations together before a final refinement. Experimental validation shows that our method can successfully handle large displacement motions. Although we particularly focus on large displacement motions in this work, we make no sacrifice in terms of overall performance. In particular, our method ranks at the top of the Middlebury benchmark.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"44 1","pages":"2443-2450"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"168","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 168

Abstract

We present an optical flow algorithm for large displacement motions. Most existing optical flow methods use the standard coarse-to-fine framework to deal with large displacement motions which has intrinsic limitations. Instead, we formulate the motion estimation problem as a motion segmentation problem. We use approximate nearest neighbor fields to compute an initial motion field and use a robust algorithm to compute a set of similarity transformations as the motion candidates for segmentation. To account for deviations from similarity transformations, we add local deformations in the segmentation process. We also observe that small objects can be better recovered using translations as the motion candidates. We fuse the motion results obtained under similarity transformations and under translations together before a final refinement. Experimental validation shows that our method can successfully handle large displacement motions. Although we particularly focus on large displacement motions in this work, we make no sacrifice in terms of overall performance. In particular, our method ranks at the top of the Middlebury benchmark.
来自最近邻场的大位移光流
提出了一种大位移运动的光流算法。现有的光流方法大多采用标准的粗到精框架来处理大位移运动,这种方法具有固有的局限性。相反,我们将运动估计问题表述为运动分割问题。我们使用近似最近邻域来计算初始运动域,并使用鲁棒算法来计算一组相似变换作为分割的运动候选。为了解释相似变换的偏差,我们在分割过程中添加了局部变形。我们还观察到,使用平移作为运动候选,可以更好地恢复小物体。在最后的细化之前,我们将相似变换和平移得到的运动结果融合在一起。实验验证表明,该方法可以成功地处理大位移运动。虽然我们在这项工作中特别关注大位移运动,但我们不会牺牲整体性能。特别是,我们的方法在米德尔伯里的基准中排名第一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信