{"title":"On a Generalization of the Weibull Distribution and Its Application in Quality Control","authors":"K. K. Jose, Lishamol Tomy, Sophia P. Thomas","doi":"10.1515/eqc-2018-0011","DOIUrl":null,"url":null,"abstract":"Abstract In this article, a generalization of the Weibull distribution called Harris extended Weibull distribution is studied, and its properties are discussed. We fit the distribution to a real-life data set to show the applicability of this distribution in reliability modeling. Also, we derive a reliability test plan for acceptance or rejection of a lot of products submitted for inspection with lifetimes following this distribution. The operating characteristic functions of the sampling plans are obtained. The producer’s risk, minimum sample sizes and associated characteristics are computed and presented in tables. The results are illustrated using two data sets on ordered failure times of products as well as failure times of ball bearings.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"62 1","pages":"113 - 124"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2018-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract In this article, a generalization of the Weibull distribution called Harris extended Weibull distribution is studied, and its properties are discussed. We fit the distribution to a real-life data set to show the applicability of this distribution in reliability modeling. Also, we derive a reliability test plan for acceptance or rejection of a lot of products submitted for inspection with lifetimes following this distribution. The operating characteristic functions of the sampling plans are obtained. The producer’s risk, minimum sample sizes and associated characteristics are computed and presented in tables. The results are illustrated using two data sets on ordered failure times of products as well as failure times of ball bearings.