{"title":"Estimating the lifetime and Reentry of the Aluminum Space Debris of Sizes (1 and 10 cm) in LEO under Atmosphere Drag Effects","authors":"H. K. Al-Zaidi, M. AL-Bermani, A. Taleb","doi":"10.31257/2018/JKP/2020/120207","DOIUrl":null,"url":null,"abstract":"This study attempts to address the lifetime and reentry of the space debris in low earth orbit LEO which extends from 200 to 1200 km. In this study a new Computer programs were designed to simulate the orbit dynamics of space debris lifetime and reentry under atmospheric drag force using Runge-Kutta Method to solve the differential equations of drag force. This model was adapted with the Drag Thermosphere Model (DTM78, 94), the Aluminum 2024 space debris in certain size (1&10 cm) were used in this study, which is frequently employed in the structure of spacecraft and aerospace designs. The selected atmospheric model for this investigation was the drag thermospheric models DTM78 and DTM94, because of this dependence on solar and geomagnetic activities. It was found that the lifetime of the space debris increases with increasing perigee altitudes. It was also found that the elliptical shape of the debris orbit would change gradually into a circular shape, then its kinetic energy would be transformed into heat and hence the debris might be destroyed in the dense atmosphere.","PeriodicalId":16215,"journal":{"name":"Journal of Kufa - Physics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Kufa - Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31257/2018/JKP/2020/120207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study attempts to address the lifetime and reentry of the space debris in low earth orbit LEO which extends from 200 to 1200 km. In this study a new Computer programs were designed to simulate the orbit dynamics of space debris lifetime and reentry under atmospheric drag force using Runge-Kutta Method to solve the differential equations of drag force. This model was adapted with the Drag Thermosphere Model (DTM78, 94), the Aluminum 2024 space debris in certain size (1&10 cm) were used in this study, which is frequently employed in the structure of spacecraft and aerospace designs. The selected atmospheric model for this investigation was the drag thermospheric models DTM78 and DTM94, because of this dependence on solar and geomagnetic activities. It was found that the lifetime of the space debris increases with increasing perigee altitudes. It was also found that the elliptical shape of the debris orbit would change gradually into a circular shape, then its kinetic energy would be transformed into heat and hence the debris might be destroyed in the dense atmosphere.