"Necessary and sufficient conditions for oscillation of second-order differential equation with several delays"

S. Santra
{"title":"\"Necessary and sufficient conditions for oscillation of second-order differential equation with several delays\"","authors":"S. Santra","doi":"10.24193/subbmath.2023.2.08","DOIUrl":null,"url":null,"abstract":"\"In this paper, necessary and sufficient conditions are establish of the solutions to second-order delay differential equations of the form \\begin{equation} \\Big(r(t)\\big(x'(t)\\big)^\\gamma\\Big)' +\\sum_{i=1}^m q_i(t)f_i\\big(x(\\sigma_i(t))\\big)=0 \\text{ for } t \\geq t_0,\\notag \\end{equation} We consider two cases when $f_i(u)/u^\\beta$ is non-increasing for $\\beta<\\gamma$, and non-decreasing for $\\beta>\\gamma$ where $\\beta$ and $\\gamma$ are the quotient of two positive odd integers. Our main tool is Lebesgue's Dominated Convergence theorem. Examples illustrating the applicability of the results are also given, and state an open problem.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.2.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

"In this paper, necessary and sufficient conditions are establish of the solutions to second-order delay differential equations of the form \begin{equation} \Big(r(t)\big(x'(t)\big)^\gamma\Big)' +\sum_{i=1}^m q_i(t)f_i\big(x(\sigma_i(t))\big)=0 \text{ for } t \geq t_0,\notag \end{equation} We consider two cases when $f_i(u)/u^\beta$ is non-increasing for $\beta<\gamma$, and non-decreasing for $\beta>\gamma$ where $\beta$ and $\gamma$ are the quotient of two positive odd integers. Our main tool is Lebesgue's Dominated Convergence theorem. Examples illustrating the applicability of the results are also given, and state an open problem."
二阶多时滞微分方程振动的充分必要条件
本文建立了形式为\begin{equation} \Big(r(t)\big(x'(t)\big)^\gamma\Big)' +\sum_{i=1}^m q_i(t)f_i\big(x(\sigma_i(t))\big)=0 \text{ for } t \geq t_0,\notag \end{equation}的二阶时滞微分方程解的充分必要条件。我们考虑两种情况,即$f_i(u)/u^\beta$对$\beta\gamma$不递增,其中$\beta$和$\gamma$是两个正奇数的商。我们的主要工具是勒贝格主导收敛定理。文中还举例说明了结果的适用性,并说明了一个有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
31 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信