Computing generic bivariate Gröbner bases with Mathemagix

Robin Larrieu
{"title":"Computing generic bivariate Gröbner bases with Mathemagix","authors":"Robin Larrieu","doi":"10.1145/3371991.3371994","DOIUrl":null,"url":null,"abstract":"Let <i>A, B</i> ∈ K[<i>X,Y</i>] be two bivariate polynomials over an effective field K, and let <i>G</i> be the reduced Gröbner basis of the ideal <i>I</i> := ⟨<i>A, B</i>⟩ generated by <i>A</i> and <i>B</i> with respect to the usual degree lexicographic order. Assuming <i>A</i> and <i>B</i> sufficiently generic, <i>G</i> admits a so-called <i>concise representation</i> that helps computing normal forms more efficiently [7]. Actually, given this concise representation, a polynomial <i>P</i> ∈ K[<i>X, Y</i>] can be reduced modulo <i>G</i> with quasi-optimal complexity (in terms of the size of the input <i>A, B, P</i>). Moreover, the concise representation can be computed from the input <i>A, B</i> with quasi-optimal complexity as well. The present paper reports on an efficient implementation for these two tasks in the free software Mathemagix [10]. This implementation is included in Mathemagix as a library called Larrix.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"530 1","pages":"41-44"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371991.3371994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let A, B ∈ K[X,Y] be two bivariate polynomials over an effective field K, and let G be the reduced Gröbner basis of the ideal I := ⟨A, B⟩ generated by A and B with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, G admits a so-called concise representation that helps computing normal forms more efficiently [7]. Actually, given this concise representation, a polynomial P ∈ K[X, Y] can be reduced modulo G with quasi-optimal complexity (in terms of the size of the input A, B, P). Moreover, the concise representation can be computed from the input A, B with quasi-optimal complexity as well. The present paper reports on an efficient implementation for these two tasks in the free software Mathemagix [10]. This implementation is included in Mathemagix as a library called Larrix.
计算一般的二元Gröbner基与mathmagix
设A, B∈K[X,Y]是有效域K上的两个二元多项式,并且设G是理想I:=⟨A, B⟩的约简Gröbner基,该理想I:=⟨A, B⟩由A和B根据通常的度字典顺序生成。假设A和B足够通用,G允许所谓的简洁表示,有助于更有效地计算范式[7]。实际上,给定这种简洁的表示,多项式P∈K[X, Y]可以以拟最优的复杂度(就输入a, B, P的大小而言)对G进行模化,并且也可以以拟最优的复杂度从输入a, B中计算出简洁的表示。本文报道了在自由软件Mathemagix[10]中对这两个任务的有效实现。这个实现作为一个名为Larrix的库包含在mathmagix中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信