Calculation and control design of stability margins: a solution to singularly perturbed systems

C.-P. Cheng, Tzuu-Hseng S. Li
{"title":"Calculation and control design of stability margins: a solution to singularly perturbed systems","authors":"C.-P. Cheng, Tzuu-Hseng S. Li","doi":"10.1109/MWSCAS.1991.252198","DOIUrl":null,"url":null,"abstract":"The theory of matrix perturbation is used to calculate the stability margins and design the feedback gain matrix which yields the specified stability margins for linear time-invariant multivariable systems. The calculation of stability margins is equivalent to the solution of a polynomial equation and the feedback gain design is equivalent to the problem of pole assignment. When these results are applied to singularly perturbed systems one will know why the stability of real dynamic systems can be analyzed from their mathematical models.<<ETX>>","PeriodicalId":6453,"journal":{"name":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","volume":"7 1","pages":"474-477 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1991.252198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The theory of matrix perturbation is used to calculate the stability margins and design the feedback gain matrix which yields the specified stability margins for linear time-invariant multivariable systems. The calculation of stability margins is equivalent to the solution of a polynomial equation and the feedback gain design is equivalent to the problem of pole assignment. When these results are applied to singularly perturbed systems one will know why the stability of real dynamic systems can be analyzed from their mathematical models.<>
稳定裕度的计算与控制设计:奇异摄动系统的一种解
利用矩阵摄动理论计算了线性定常多变量系统的稳定裕度,并设计了反馈增益矩阵,得到了给定的稳定裕度。稳定裕度的计算相当于多项式方程的求解,反馈增益的设计相当于极点配置问题。当这些结果应用于奇摄动系统时,人们就会知道为什么实际动态系统的稳定性可以从它们的数学模型中分析出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信