L2D2

Deepak Vasisht, Jayanth Shenoy, Ranveer Chandra
{"title":"L2D2","authors":"Deepak Vasisht, Jayanth Shenoy, Ranveer Chandra","doi":"10.1145/3452296.3472932","DOIUrl":null,"url":null,"abstract":"Large constellations of Low Earth Orbit satellites promise to provide near real-time high-resolution Earth imagery. Yet, getting this large amount of data back to Earth is challenging because of their low orbits and fast motion through space. Centralized architectures with few multi-million dollar ground stations incur large hour-level data download latency and are hard to scale. We propose a geographically distributed ground station design, L2D2, that uses low-cost commodity hardware to offer low latency robust downlink. L2D2 is the first system to use a hybrid ground station model, where only a subset of ground stations are uplink-capable. We design new algorithms for scheduling and rate adaptation that enable low latency and high robustness despite the limitations of the receive-only ground stations. We evaluate L2D2 through a combination of trace-driven simulations and real-world satellite-ground station measurements. Our results demonstrate that L2D2's geographically distributed design can reduce data downlink latency from 90 minutes to 21 minutes.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Large constellations of Low Earth Orbit satellites promise to provide near real-time high-resolution Earth imagery. Yet, getting this large amount of data back to Earth is challenging because of their low orbits and fast motion through space. Centralized architectures with few multi-million dollar ground stations incur large hour-level data download latency and are hard to scale. We propose a geographically distributed ground station design, L2D2, that uses low-cost commodity hardware to offer low latency robust downlink. L2D2 is the first system to use a hybrid ground station model, where only a subset of ground stations are uplink-capable. We design new algorithms for scheduling and rate adaptation that enable low latency and high robustness despite the limitations of the receive-only ground stations. We evaluate L2D2 through a combination of trace-driven simulations and real-world satellite-ground station measurements. Our results demonstrate that L2D2's geographically distributed design can reduce data downlink latency from 90 minutes to 21 minutes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信