Federated Calibration and Evaluation of Binary Classifiers

Graham Cormode, Igor L. Markov
{"title":"Federated Calibration and Evaluation of Binary Classifiers","authors":"Graham Cormode, Igor L. Markov","doi":"10.48550/arXiv.2210.12526","DOIUrl":null,"url":null,"abstract":"\n We address two major obstacles to practical deployment of AI-based models on distributed private data. Whether a model was trained by a federation of cooperating clients or trained centrally, (1) the output scores must be calibrated, and (2) performance metrics must be evaluated --- all without assembling labels in one place. In particular, we show how to perform calibration and compute the standard metrics of precision, recall, accuracy and ROC-AUC in the federated setting under three privacy models (\n i\n ) secure aggregation, (\n ii\n ) distributed differential privacy, (\n iii\n ) local differential privacy. Our theorems and experiments clarify tradeoffs between privacy, accuracy, and data efficiency. They also help decide if a given application has sufficient data to support federated calibration and evaluation.\n","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":"26 1","pages":"3253-3265"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.12526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We address two major obstacles to practical deployment of AI-based models on distributed private data. Whether a model was trained by a federation of cooperating clients or trained centrally, (1) the output scores must be calibrated, and (2) performance metrics must be evaluated --- all without assembling labels in one place. In particular, we show how to perform calibration and compute the standard metrics of precision, recall, accuracy and ROC-AUC in the federated setting under three privacy models ( i ) secure aggregation, ( ii ) distributed differential privacy, ( iii ) local differential privacy. Our theorems and experiments clarify tradeoffs between privacy, accuracy, and data efficiency. They also help decide if a given application has sufficient data to support federated calibration and evaluation.
二值分类器的联邦校准与评价
我们解决了在分布式私有数据上实际部署基于人工智能的模型的两个主要障碍。无论模型是由合作客户联盟训练的还是集中训练的,(1)必须校准输出分数,(2)必须评估性能指标——所有这些都不需要在一个地方组装标签。特别是,我们展示了如何在三种隐私模型(i)安全聚合,(ii)分布式差分隐私,(iii)本地差分隐私下,在联邦设置中执行校准和计算精度,召回率,准确度和ROC-AUC的标准度量。我们的定理和实验阐明了隐私、准确性和数据效率之间的权衡。它们还有助于确定给定应用程序是否有足够的数据来支持联邦校准和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信