{"title":"Anisotropic mechanical properties and strain tuneable band-gap in single-layer SiP, SiAs, GeP and GeAs","authors":"Bohayra Mortazavi , Timon Rabczuk","doi":"10.1016/j.physe.2018.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>Group IV–V-type two-dimensional (2D) materials, such as GeP<span>, GeAs, SiP<span><span> and SiAs with anisotropic atomic structures, have recently attracted remarkable attention due to their outstanding physics. In this investigation, we conducted </span>density functional theory<span><span> simulations to explore the mechanical responses of these novel 2D systems. In particular, we explored the possibility of band-gap engineering in these 2D structures through different mechanical loading conditions. First-principles results of uniaxial tensile simulations confirm anisotropic mechanical responses of these novel 2D structures, with considerably higher elastic modulus, </span>tensile strength and stretchability along the zigzag direction as compared with the armchair direction. Notably, the stretchability of considered monolayers along the zigzag direction was found to be slightly higher than that of the single-layer graphene and h-BN. The electronic band-gaps of energy minimized single-layer SiP, SiAs, GeP and GeAs were estimated by HSE06 method to be 2.58 eV, 2.3 eV, 2.24 eV and 1.98 eV, respectively. Our results highlight the strain tuneable band-gap character in single-layer SiP, SiAs, GeP and GeAs and suggest that various mechanical loading conditions can be employed to finely narrow the electronic band-gaps in these structures.</span></span></span></p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"103 ","pages":"Pages 273-278"},"PeriodicalIF":2.9000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.physe.2018.06.011","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947718304387","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 40
Abstract
Group IV–V-type two-dimensional (2D) materials, such as GeP, GeAs, SiP and SiAs with anisotropic atomic structures, have recently attracted remarkable attention due to their outstanding physics. In this investigation, we conducted density functional theory simulations to explore the mechanical responses of these novel 2D systems. In particular, we explored the possibility of band-gap engineering in these 2D structures through different mechanical loading conditions. First-principles results of uniaxial tensile simulations confirm anisotropic mechanical responses of these novel 2D structures, with considerably higher elastic modulus, tensile strength and stretchability along the zigzag direction as compared with the armchair direction. Notably, the stretchability of considered monolayers along the zigzag direction was found to be slightly higher than that of the single-layer graphene and h-BN. The electronic band-gaps of energy minimized single-layer SiP, SiAs, GeP and GeAs were estimated by HSE06 method to be 2.58 eV, 2.3 eV, 2.24 eV and 1.98 eV, respectively. Our results highlight the strain tuneable band-gap character in single-layer SiP, SiAs, GeP and GeAs and suggest that various mechanical loading conditions can be employed to finely narrow the electronic band-gaps in these structures.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures