Solving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
Gholam Hosein Askarirobati, A. H. Borzabadi, A. Heydari
{"title":"Solving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm","authors":"Gholam Hosein Askarirobati, A. H. Borzabadi, A. Heydari","doi":"10.22052/IJMC.2018.137247.1370","DOIUrl":null,"url":null,"abstract":"Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategies‎, ‎to find approximate solutions for multi-objective optimal control problems (MOCPs)‎. ‎The desired control function may be subjected to severe changes over a period of time‎. ‎In response to deficiency‎, ‎the process of dispersal has been modified in the MOIWO‎. ‎This modification will increase the exploration power of the weeds and reduces the search space gradually during the iteration process‎. ‎ ‎The performance of the proposed algorithm ‎is compared with conventional Non-dominated Sorting Genetic Algorithm (NSGA-II) and Non-dominated Sorting Invasive Weed Optimization (NSIWO) algorithm‎.The results show that the proposed algorithm has better performance than others in terms of computing time‎, ‎convergence rate and diversity of solutions on the Pareto ‎frontier.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2018.137247.1370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategies‎, ‎to find approximate solutions for multi-objective optimal control problems (MOCPs)‎. ‎The desired control function may be subjected to severe changes over a period of time‎. ‎In response to deficiency‎, ‎the process of dispersal has been modified in the MOIWO‎. ‎This modification will increase the exploration power of the weeds and reduces the search space gradually during the iteration process‎. ‎ ‎The performance of the proposed algorithm ‎is compared with conventional Non-dominated Sorting Genetic Algorithm (NSGA-II) and Non-dominated Sorting Invasive Weed Optimization (NSIWO) algorithm‎.The results show that the proposed algorithm has better performance than others in terms of computing time‎, ‎convergence rate and diversity of solutions on the Pareto ‎frontier.
用混合进化算法求解化工过程多目标最优控制问题
进化算法已经被认为适合于提取多目标问题的近似解,因为它们能够进化出一组沿帕累托边界分布的非支配解。本文采用一种受多目标入侵杂草优化(MOIWO)和非支配排序(NS)策略启发的进化优化方案来寻找多目标最优控制问题(mops)的近似解。所需的控制功能可能在一段时间内发生严重变化。为了应对缺陷,MOIWO对扩散过程进行了修改。这种修改将增加杂草的搜索能力,并在迭代过程中逐渐缩小搜索空间。将该算法的性能与传统的非支配排序遗传算法(NSGA-II)和非支配排序入侵杂草优化算法(NSIWO)进行了比较。结果表明,该算法在计算时间、收敛速度和Pareto边界解的多样性等方面均优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信