Cliques with many colors in triple systems

IF 0.4 Q4 MATHEMATICS, APPLIED
D. Mubayi, Andrew Suk
{"title":"Cliques with many colors in triple systems","authors":"D. Mubayi, Andrew Suk","doi":"10.4310/joc.2021.v12.n4.a2","DOIUrl":null,"url":null,"abstract":"Erdős and Hajnal constructed a 4-coloring of the triples of an $N$-element set such that every $n$-element subset contains 2 triples with distinct colors, and $N$ is double exponential in $n$. Conlon, Fox and Rodl asked whether there is some integer $q\\ge 3$ and a $q$-coloring of the triples of an $N$-element set such that every $n$-element subset has 3 triples with distinct colors, and $N$ is double exponential in $n$. We make the first nontrivial progress on this problem by providing a $q$-coloring with this property for all $q\\geq 9$, where $N$ is exponential in $n^{2+cq}$ and $c>0$ is an absolute constant.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"5 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2021.v12.n4.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Erdős and Hajnal constructed a 4-coloring of the triples of an $N$-element set such that every $n$-element subset contains 2 triples with distinct colors, and $N$ is double exponential in $n$. Conlon, Fox and Rodl asked whether there is some integer $q\ge 3$ and a $q$-coloring of the triples of an $N$-element set such that every $n$-element subset has 3 triples with distinct colors, and $N$ is double exponential in $n$. We make the first nontrivial progress on this problem by providing a $q$-coloring with this property for all $q\geq 9$, where $N$ is exponential in $n^{2+cq}$ and $c>0$ is an absolute constant.
在三重体系中有许多颜色的团
Erdős和Hajnal构造了一个$N$ -element集合的三元组的四着色,使得每个$n$ -element子集包含2个具有不同颜色的三元组,并且$N$是$n$的双指数。Conlon, Fox和Rodl问是否存在一个整数$q\ge 3$和一个$q$ -着色的$N$ -元素集合的三元组,使得每个$n$ -元素子集有3个不同颜色的三元组,并且$N$是$n$的双指数。我们通过对所有$q\geq 9$提供具有此性质的$q$ -着色,在这个问题上取得了第一个重要进展,其中$N$是$n^{2+cq}$的指数,$c>0$是绝对常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信