STCEC: A Remote Sensing Dataset for Identifying Spatial-Temporal Change in Homogeneous and Heterogeneous Environments

Thaer F. Ali, A. Woodley
{"title":"STCEC: A Remote Sensing Dataset for Identifying Spatial-Temporal Change in Homogeneous and Heterogeneous Environments","authors":"Thaer F. Ali, A. Woodley","doi":"10.1109/DICTA47822.2019.8946005","DOIUrl":null,"url":null,"abstract":"Standard experimental datasets permit comprehensive analysis between approaches. These datasets are ubiquitous in many data science domains but uncommon in remote sensing. This paper presents the Spatial-Temporal Change in Environmental Context (STCEC) dataset, an experimental remote sensing dataset that contains changes (and non-changes) in homogeneous and heterogeneous environments, thereby, enabling researchers to test their approaches in different contexts. STCEC was tested with five pixel interpolation approaches and showed a significant difference between changes in homogeneous and heterogeneous environments. It is hoped that the dataset will be used by other researchers in future work.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"36 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8946005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Standard experimental datasets permit comprehensive analysis between approaches. These datasets are ubiquitous in many data science domains but uncommon in remote sensing. This paper presents the Spatial-Temporal Change in Environmental Context (STCEC) dataset, an experimental remote sensing dataset that contains changes (and non-changes) in homogeneous and heterogeneous environments, thereby, enabling researchers to test their approaches in different contexts. STCEC was tested with five pixel interpolation approaches and showed a significant difference between changes in homogeneous and heterogeneous environments. It is hoped that the dataset will be used by other researchers in future work.
同质与异质环境时空变化的遥感数据集
标准实验数据集允许在不同方法之间进行综合分析。这些数据集在许多数据科学领域普遍存在,但在遥感领域并不常见。本文介绍了环境背景下的时空变化(STCEC)数据集,这是一个包含同质和异质环境变化(和非变化)的实验遥感数据集,从而使研究人员能够在不同的背景下测试他们的方法。采用5种像素插值方法对STCEC进行了测试,结果表明均匀和异质环境下STCEC的变化存在显著差异。希望该数据集将被其他研究人员在未来的工作中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信