Bound-state solutions of the modified Klein–Gordon and Schrödinger equations for arbitrary l-state with the modified Morse potential in the symmetries of noncommutative quantum mechanics

IF 0.7 Q3 PHYSICS, MULTIDISCIPLINARY
A. Maireche
{"title":"Bound-state solutions of the modified Klein–Gordon and Schrödinger equations for arbitrary l-state with the modified Morse potential in the symmetries of noncommutative quantum mechanics","authors":"A. Maireche","doi":"10.30970/JPS.25.1002","DOIUrl":null,"url":null,"abstract":"In this work, approximate analytical solutions of both modi(cid:28)ed Klein(cid:21)Gordon equation and Schr(cid:4)odinger equation in noncommutative relativistic and nonrelativistic three-dimensional real space have been explored by using the Pekeris approximation scheme to deal with the centrifugal term, Bopp’s shift method and standard perturbation theory. We present the bound-state energy equation with a newly proposed potential called the modi(cid:28)ed Morse potential under the condition of equal scalar and vector potentials. The potential is a superposition of the Morse potential and some exponential radial terms. The aim of combining these potentials is to have an extensive application. We show that the new energy depends on the global parameters ( Θ c and σ c ) characterizing the noncommutativity space-space and the potential parameter ( D e , r e , α ) in addition to the Gamma function and the discreet atomic quantum numbers ( j, l, s, m ) . The present results are applied in calculating both the energy spectrum for a few heterogeneous (LiH, HCl, NO) and homogeneous (H 2 , I 2 , O 2 ) diatomic molecules. We have also discussed some special cases of physical importance.","PeriodicalId":43482,"journal":{"name":"Journal of Physical Studies","volume":"4 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/JPS.25.1002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 22

Abstract

In this work, approximate analytical solutions of both modi(cid:28)ed Klein(cid:21)Gordon equation and Schr(cid:4)odinger equation in noncommutative relativistic and nonrelativistic three-dimensional real space have been explored by using the Pekeris approximation scheme to deal with the centrifugal term, Bopp’s shift method and standard perturbation theory. We present the bound-state energy equation with a newly proposed potential called the modi(cid:28)ed Morse potential under the condition of equal scalar and vector potentials. The potential is a superposition of the Morse potential and some exponential radial terms. The aim of combining these potentials is to have an extensive application. We show that the new energy depends on the global parameters ( Θ c and σ c ) characterizing the noncommutativity space-space and the potential parameter ( D e , r e , α ) in addition to the Gamma function and the discreet atomic quantum numbers ( j, l, s, m ) . The present results are applied in calculating both the energy spectrum for a few heterogeneous (LiH, HCl, NO) and homogeneous (H 2 , I 2 , O 2 ) diatomic molecules. We have also discussed some special cases of physical importance.
非对易量子力学对称性中任意l态修正Morse势的修正Klein-Gordon方程和Schrödinger方程的束缚态解
本文利用处理离心项的Pekeris近似格式、Bopp位移法和标准摄动理论,探讨了非对易相对论和非相对论三维实空间中modi(cid:28)ed Klein(cid:21)Gordon方程和Schr(cid:4)odinger方程的近似解析解。在标量势和矢量势相等的条件下,我们用一个新提出的称为modcid:28的摩尔斯势给出了束缚态能量方程。势是摩尔斯势和一些指数径向项的叠加。结合这些潜力的目的是为了得到广泛的应用。我们证明了新能量取决于表征非交换性空间-空间的全局参数(Θ c和σ c)和势参数(D e, re, α),以及伽马函数和离散原子量子数(j, l, s, m)。本文的结果应用于计算一些非均相(LiH, HCl, NO)和均相(h2, i2, o2)双原子分子的能谱。我们还讨论了一些具有物理重要性的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physical Studies
Journal of Physical Studies PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
20.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信