Fully printed, all-carbon, recyclable electronics

Nicholas X. Williams, George Bullard, N. Brooke, M. Therien, A. Franklin
{"title":"Fully printed, all-carbon, recyclable electronics","authors":"Nicholas X. Williams, George Bullard, N. Brooke, M. Therien, A. Franklin","doi":"10.21203/rs.3.rs-74355/v1","DOIUrl":null,"url":null,"abstract":"\n The rapid growth of electronic waste must be curtailed to prevent accumulation of environmentally and biologically toxic materials, which are essential to traditional electronics1. The recent proliferation of transient electronics has focused predominantly on biocompatibility(2,3), and studies reporting material recapture have only demonstrated reuse of conducting materials(4–6). Meanwhile, the ideal solution to the electronic waste epidemic — recapture and reuse of all materials — has been largely neglected. Here we show complete recyclability of all materials in printed, all-carbon electronics using paper substrates, semiconducting carbon nanotubes, conducting graphene, and insulating crystalline nanocellulose. The addition of mobile ions to the dielectric produced significant improvements in switching speed, subthreshold swing, and among the highest on-current for printed transistors. These devices evinced superlative stability over 6 months, after which they are shown to be controllably decomposed for complete recycling of materials and re-printing of devices with similar performance to baseline devices. The printing of all-carbon, recyclable electronics presents a new path toward green electronics with potential to mitigate the environmental impact of electronic waste. We anticipate all-carbon, recyclable electronics to be a watershed, facilitating internet-of-everything applications, such as ubiquitous sensors for continuous monitoring of diseases or environmental conditions, while preserving carbon neutrality in the device lifecycle.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-74355/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The rapid growth of electronic waste must be curtailed to prevent accumulation of environmentally and biologically toxic materials, which are essential to traditional electronics1. The recent proliferation of transient electronics has focused predominantly on biocompatibility(2,3), and studies reporting material recapture have only demonstrated reuse of conducting materials(4–6). Meanwhile, the ideal solution to the electronic waste epidemic — recapture and reuse of all materials — has been largely neglected. Here we show complete recyclability of all materials in printed, all-carbon electronics using paper substrates, semiconducting carbon nanotubes, conducting graphene, and insulating crystalline nanocellulose. The addition of mobile ions to the dielectric produced significant improvements in switching speed, subthreshold swing, and among the highest on-current for printed transistors. These devices evinced superlative stability over 6 months, after which they are shown to be controllably decomposed for complete recycling of materials and re-printing of devices with similar performance to baseline devices. The printing of all-carbon, recyclable electronics presents a new path toward green electronics with potential to mitigate the environmental impact of electronic waste. We anticipate all-carbon, recyclable electronics to be a watershed, facilitating internet-of-everything applications, such as ubiquitous sensors for continuous monitoring of diseases or environmental conditions, while preserving carbon neutrality in the device lifecycle.
全印刷,全碳,可回收的电子产品
必须遏制电子废物的迅速增长,以防止对环境和生物有毒物质的积累,这些物质对传统电子产品至关重要。最近瞬态电子学的扩散主要集中在生物相容性上(2,3),而报告材料回收的研究只证明了导电材料的再利用(4-6)。与此同时,电子垃圾泛滥的理想解决方案——所有材料的回收和再利用——在很大程度上被忽视了。在这里,我们展示了印刷中所有材料的完全可回收性,全碳电子产品使用纸质衬底,半导体碳纳米管,导电石墨烯和绝缘晶体纳米纤维素。在电介质中加入可移动离子,在开关速度、亚阈值摆幅和印刷晶体管的最高导通电流方面产生了显著的改进。这些设备在6个月内表现出最高的稳定性,之后它们被证明可以可控地分解,以完全回收材料并重新打印具有与基线设备相似性能的设备。全碳、可回收电子产品的印刷为绿色电子产品提供了一条新的道路,有可能减轻电子废物对环境的影响。我们预计全碳、可回收的电子产品将成为一个分水岭,促进万物互联应用,比如无处不在的传感器,用于持续监测疾病或环境条件,同时在设备生命周期中保持碳中和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信