Efficient Winograd-based Convolution Kernel Implementation on Edge Devices

A. Xygkis, Lazaros Papadopoulos, D. Moloney, D. Soudris, Sofiane Yous
{"title":"Efficient Winograd-based Convolution Kernel Implementation on Edge Devices","authors":"A. Xygkis, Lazaros Papadopoulos, D. Moloney, D. Soudris, Sofiane Yous","doi":"10.1145/3195970.3196041","DOIUrl":null,"url":null,"abstract":"The implementation of Convolutional Neural Networks on edge Internet of Things (IoT) devices is a significant programming challenge, due to the limited computational resources and the real-time requirements of modern applications. This work focuses on the efficient implementation of the Winograd convolution, based on a set of application-independent and Winograd-specific software techniques for improving the utilization of the edge devices computational resources. The proposed techniques were evaluated in Intel/Movidius Myriad2 platform, using 4 CNNs of various computational requirements. The results show significant performance improvements, up to 54%, over other convolution algorithms.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"3 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

The implementation of Convolutional Neural Networks on edge Internet of Things (IoT) devices is a significant programming challenge, due to the limited computational resources and the real-time requirements of modern applications. This work focuses on the efficient implementation of the Winograd convolution, based on a set of application-independent and Winograd-specific software techniques for improving the utilization of the edge devices computational resources. The proposed techniques were evaluated in Intel/Movidius Myriad2 platform, using 4 CNNs of various computational requirements. The results show significant performance improvements, up to 54%, over other convolution algorithms.
边缘设备上基于winograd卷积核的高效实现
由于有限的计算资源和现代应用的实时性要求,在边缘物联网(IoT)设备上实现卷积神经网络是一个重大的编程挑战。这项工作的重点是有效实现Winograd卷积,基于一组独立于应用程序和Winograd特定的软件技术,以提高边缘设备计算资源的利用率。在Intel/Movidius Myriad2平台上,使用4个不同计算需求的cnn对所提出的技术进行了评估。结果表明,与其他卷积算法相比,该算法的性能提高了54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信