Short-term Traffic Flow Prediction Based on Genetic Artificial Neural Network and Exponential Smoothing

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY
Changxi Ma, Limin Tan, X. Xu
{"title":"Short-term Traffic Flow Prediction Based on Genetic Artificial Neural Network and Exponential Smoothing","authors":"Changxi Ma, Limin Tan, X. Xu","doi":"10.7307/ptt.v32i6.3360","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy of short-term traffic flow prediction, a combined model composed of artificial neural network optimized by using Genetic Algorithm (GA) and Exponential Smoothing (ES) has been proposed. By using the metaheuristic optimal search ability of GA, the connection weight and threshold of the feedforward neural network trained by a backpropagation algorithm are optimized to avoid the feedforward neural network falling into local optimum, and the prediction model of Genetic Artificial Neural Network (GANN) is established. An ES prediction model is presented then. In order to take the advantages of the two models, the combined model is composed of a weighted average, while the weight of the combined model is determined according to the prediction mean square error of the single model. The road traffic flow data of Xuancheng, Anhui Province with an observation interval of 5 min are used for experimental verification. Additionally, the feedforward neural network model, GANN model, ES model and combined model are compared and analysed, respectively. The results show that the prediction accuracy of the optimized feedforward neural network is much higher than that before the optimization. The prediction accuracy of the combined model is higher than that of the two single models, which verifies the feasibility and effectiveness of the combined model.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":"46 1","pages":"747-760"},"PeriodicalIF":0.8000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/ptt.v32i6.3360","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

In order to improve the accuracy of short-term traffic flow prediction, a combined model composed of artificial neural network optimized by using Genetic Algorithm (GA) and Exponential Smoothing (ES) has been proposed. By using the metaheuristic optimal search ability of GA, the connection weight and threshold of the feedforward neural network trained by a backpropagation algorithm are optimized to avoid the feedforward neural network falling into local optimum, and the prediction model of Genetic Artificial Neural Network (GANN) is established. An ES prediction model is presented then. In order to take the advantages of the two models, the combined model is composed of a weighted average, while the weight of the combined model is determined according to the prediction mean square error of the single model. The road traffic flow data of Xuancheng, Anhui Province with an observation interval of 5 min are used for experimental verification. Additionally, the feedforward neural network model, GANN model, ES model and combined model are compared and analysed, respectively. The results show that the prediction accuracy of the optimized feedforward neural network is much higher than that before the optimization. The prediction accuracy of the combined model is higher than that of the two single models, which verifies the feasibility and effectiveness of the combined model.
基于遗传人工神经网络和指数平滑的短期交通流预测
为了提高短期交通流预测的精度,提出了一种基于遗传算法和指数平滑优化的人工神经网络组合模型。利用遗传算法的元启发式最优搜索能力,对反向传播算法训练的前馈神经网络的连接权值和阈值进行优化,避免前馈神经网络陷入局部最优,并建立遗传人工神经网络(GANN)的预测模型。提出了ES预测模型。为了发挥两种模型的优点,组合模型由加权平均组成,组合模型的权重根据单个模型的预测均方误差确定。实验验证采用安徽省宣城市的道路交通流数据,观测间隔为5 min。并分别对前馈神经网络模型、GANN模型、ES模型和组合模型进行了比较分析。结果表明,优化后的前馈神经网络预测精度明显高于优化前。组合模型的预测精度高于两个单一模型的预测精度,验证了组合模型的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信