On localizations of quasi-simple groups with given countable center

Ramón Flores, Jos'e L. Rodr'iguez
{"title":"On localizations of quasi-simple groups with given countable center","authors":"Ramón Flores, Jos'e L. Rodr'iguez","doi":"10.4171/ggd/573","DOIUrl":null,"url":null,"abstract":"A group homomorphism $i: H \\to G$ is a localization of $H$ if for every homomorphism $\\varphi: H\\rightarrow G$ there exists a unique endomorphism $\\psi: G\\rightarrow G$, such that $i \\psi=\\varphi$ (maps are acting on the right). G\\\"{o}bel and Trlifaj asked in \\cite[Problem 30.4(4), p. 831]{GT12} which abelian groups are centers of localizations of simple groups. Approaching this question we show that every countable abelian group is indeed the center of some localization of a quasi-simple group, i.e. a central extension of a simple group. The proof uses Obraztsov and Ol'shanskii's construction of infinite simple groups with a special subgroup lattice and also extensions of results on localizations of finite simple groups by the second author and Scherer, Th\\'{e}venaz and Viruel.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"241 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/ggd/573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A group homomorphism $i: H \to G$ is a localization of $H$ if for every homomorphism $\varphi: H\rightarrow G$ there exists a unique endomorphism $\psi: G\rightarrow G$, such that $i \psi=\varphi$ (maps are acting on the right). G\"{o}bel and Trlifaj asked in \cite[Problem 30.4(4), p. 831]{GT12} which abelian groups are centers of localizations of simple groups. Approaching this question we show that every countable abelian group is indeed the center of some localization of a quasi-simple group, i.e. a central extension of a simple group. The proof uses Obraztsov and Ol'shanskii's construction of infinite simple groups with a special subgroup lattice and also extensions of results on localizations of finite simple groups by the second author and Scherer, Th\'{e}venaz and Viruel.
具有给定可数中心的拟单群的局部化
群同态$i: H \to G$是$H$的一个局部化,如果对于每个同态$\varphi: H\rightarrow G$存在一个唯一的自同态$\psi: G\rightarrow G$,例如$i \psi=\varphi$(映射作用于右侧)。Göbel和Trlifaj在\cite[Problem 30.4(4), p. 831]{GT12}问哪些阿贝尔群是简单群的定域中心。针对这个问题,我们证明了每一个可数阿贝尔群确实是一个拟简单群的某个定域的中心,即一个简单群的中心扩展。该证明利用了Obraztsov和Ol’shanskii关于具有特殊子群格的无限简单群的构造,并推广了第二作者和Scherer、thsamvenaz和Viruel关于有限简单群的局域化的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信