{"title":"The Complementary Exponentiated Lomax-Poisson Distribution with Applications to Bladder Cancer and Failure Data","authors":"D. Kumar, M. Nassar, A. Afify, S. Dey","doi":"10.17713/AJS.V50I3.1052","DOIUrl":null,"url":null,"abstract":"A new continuous four-parameter lifetime distribution is introduced by compounding the distribution of the maximum of a sequence of an independently identically exponentiated Lomax distributed random variables and zero truncated Poisson random variable, defined as the complementary exponentiated Lomax Poisson (CELP) distribution. The new distribution which exhibits decreasing and upside down bathtub shaped density while the distribution has the ability to model lifetime data with decreasing, increasing and upside-down bathtub shaped failure rates. The new distribution has a number of well-known lifetime special sub-models, such as Lomax-zero truncated Poisson distribution, exponentiated Pareto-zero truncated Poisson distribution and Pareto- zero truncated Poisson distribution. A comprehensive account of the mathematical and statistical properties of the new distribution is presented. The model parameters are obtained by the methods of maximum likelihood, least squares, weighted least squares, percentiles, maximum product of spacing and Cram\\'er-von-Mises and compared them using Monte Carlo simulation study. We illustrate the performance of the proposed distribution by means of two real data sets and both the data sets show the new distribution is more appropriate as compared to the transmuted Lomax, beta exponentiated Lomax, McDonald Lomax, Kumaraswamy Lomax, Weibull Lomax, Burr X Lomax and Lomax distributions.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"37 3 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/AJS.V50I3.1052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
A new continuous four-parameter lifetime distribution is introduced by compounding the distribution of the maximum of a sequence of an independently identically exponentiated Lomax distributed random variables and zero truncated Poisson random variable, defined as the complementary exponentiated Lomax Poisson (CELP) distribution. The new distribution which exhibits decreasing and upside down bathtub shaped density while the distribution has the ability to model lifetime data with decreasing, increasing and upside-down bathtub shaped failure rates. The new distribution has a number of well-known lifetime special sub-models, such as Lomax-zero truncated Poisson distribution, exponentiated Pareto-zero truncated Poisson distribution and Pareto- zero truncated Poisson distribution. A comprehensive account of the mathematical and statistical properties of the new distribution is presented. The model parameters are obtained by the methods of maximum likelihood, least squares, weighted least squares, percentiles, maximum product of spacing and Cram\'er-von-Mises and compared them using Monte Carlo simulation study. We illustrate the performance of the proposed distribution by means of two real data sets and both the data sets show the new distribution is more appropriate as compared to the transmuted Lomax, beta exponentiated Lomax, McDonald Lomax, Kumaraswamy Lomax, Weibull Lomax, Burr X Lomax and Lomax distributions.
期刊介绍:
The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.