A Deep Learning Method with CRF for Instance Segmentation of Metal-Organic Frameworks in Scanning Electron Microscopy Images

Ilyes Batatia
{"title":"A Deep Learning Method with CRF for Instance Segmentation of Metal-Organic Frameworks in Scanning Electron Microscopy Images","authors":"Ilyes Batatia","doi":"10.23919/Eusipco47968.2020.9287366","DOIUrl":null,"url":null,"abstract":"This paper proposes an integrated method for recognizing special crystals, called metal-organic frameworks (MOF), in scanning electron microscopy images (SEM). The proposed approach combines two deep learning networks and a dense conditional random field (CRF) to perform image segmentation. A modified Unet-like convolutional neural network (CNN), incorporating dilatation techniques using atrous convolution, is designed to segment cluttered objects in the SEM image. The dense CRF is tailored to enhance object boundaries and recover small objects. The unary energy of the CRF is obtained from the CNN. And the pairwise energy is estimated using mean field approximation. The resulting segmented regions are fed to a fully connected CNN that performs instance recognition. The method has been trained on a dataset of 500 images with 3200 objects from 3 classes. Testing achieves an overall accuracy of 95.7% MOF recognition. The proposed method opens up the possibility for developing automated chemical process monitoring that allows researchers to optimize conditions of MOF synthesis.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"85 1","pages":"625-629"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes an integrated method for recognizing special crystals, called metal-organic frameworks (MOF), in scanning electron microscopy images (SEM). The proposed approach combines two deep learning networks and a dense conditional random field (CRF) to perform image segmentation. A modified Unet-like convolutional neural network (CNN), incorporating dilatation techniques using atrous convolution, is designed to segment cluttered objects in the SEM image. The dense CRF is tailored to enhance object boundaries and recover small objects. The unary energy of the CRF is obtained from the CNN. And the pairwise energy is estimated using mean field approximation. The resulting segmented regions are fed to a fully connected CNN that performs instance recognition. The method has been trained on a dataset of 500 images with 3200 objects from 3 classes. Testing achieves an overall accuracy of 95.7% MOF recognition. The proposed method opens up the possibility for developing automated chemical process monitoring that allows researchers to optimize conditions of MOF synthesis.
基于CRF的扫描电镜图像中金属-有机框架实例分割的深度学习方法
本文提出了一种识别扫描电子显微镜图像中特殊晶体(金属有机框架)的集成方法。该方法结合了两个深度学习网络和一个密集条件随机场(CRF)来进行图像分割。一种改进的类unet卷积神经网络(CNN),结合使用亚特卷积的扩张技术,设计用于分割扫描电镜图像中的杂乱物体。密集CRF是针对增强目标边界和恢复小目标而定制的。CRF的一元能量由CNN得到。并利用平均场近似法对能量进行了估计。得到的分割区域被馈送到执行实例识别的全连接CNN。该方法在500张图像的数据集上进行了训练,其中包含来自3个类的3200个对象。测试结果表明,MOF识别的总体准确率为95.7%。所提出的方法开辟了开发自动化化学过程监测的可能性,使研究人员能够优化MOF合成的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信