Polarimetric SAR Image Super-Resolution VIA Deep Convolutional Neural Network

Liupeng Lin, Jie Li, Q. Yuan, Huanfeng Shen
{"title":"Polarimetric SAR Image Super-Resolution VIA Deep Convolutional Neural Network","authors":"Liupeng Lin, Jie Li, Q. Yuan, Huanfeng Shen","doi":"10.1109/IGARSS.2019.8898160","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of full-polarimetric SAR image degradation, this paper proposes a full-polarimetric SAR image super-resolution reconstruction method combined with a convolutional neural network and residual compensation. Through the advantages of the deep convolutional neural network for nonlinear model fitting, this paper performs super-resolution reconstruction on low-resolution full-polarimetric SAR images, and then applies residual compensation to network reconstruction results, using low-resolution image information to the network. The super-resolution reconstruction results are corrected to obtain a high-resolution full-polarimetric SAR image. Compared with the traditional full-polarimetric SAR image super-resolution reconstruction method, the proposed method shows excellent results in both visual and quantitative evaluation indicators, especially the reconstruction of detailed information.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"31 1","pages":"3205-3208"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In order to solve the problem of full-polarimetric SAR image degradation, this paper proposes a full-polarimetric SAR image super-resolution reconstruction method combined with a convolutional neural network and residual compensation. Through the advantages of the deep convolutional neural network for nonlinear model fitting, this paper performs super-resolution reconstruction on low-resolution full-polarimetric SAR images, and then applies residual compensation to network reconstruction results, using low-resolution image information to the network. The super-resolution reconstruction results are corrected to obtain a high-resolution full-polarimetric SAR image. Compared with the traditional full-polarimetric SAR image super-resolution reconstruction method, the proposed method shows excellent results in both visual and quantitative evaluation indicators, especially the reconstruction of detailed information.
基于深度卷积神经网络的极化SAR图像超分辨率
为了解决全极化SAR图像退化问题,本文提出了一种结合卷积神经网络和残差补偿的全极化SAR图像超分辨率重建方法。本文利用深度卷积神经网络在非线性模型拟合方面的优势,对低分辨率全极化SAR图像进行超分辨率重建,然后对网络重建结果进行残差补偿,将低分辨率图像信息引入网络。对超分辨率重建结果进行校正,得到高分辨率全极化SAR图像。与传统的全极化SAR图像超分辨率重建方法相比,该方法在视觉和定量评价指标上均取得了优异的效果,尤其是在细节信息重建方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信