{"title":"Some Characterizations for Approximate Biflatness of Semigroup Algebras","authors":"N. Razi, A. Sahami","doi":"10.1155/2023/9961772","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we study an approximate biflatness of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msup>\n <mrow>\n <mi>l</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> is a Clifford semigroup. Indeed, we show that a Clifford semigroup algebra <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msup>\n <mrow>\n <mi>l</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is approximately biflat if and only if every maximal subgroup of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> is amenable, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>E</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is locally finite, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <msup>\n <mrow>\n <mi>l</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> has an approximate identity in <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>c</mi>\n </mrow>\n <mrow>\n <mn>00</mn>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>. Moreover, we prove that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <msup>\n <mrow>\n <mi>l</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is approximately biflat if and only if each maximal subgroup of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> is amenable for an inverse semigroup <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> such that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>E</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, the set of its idempotent elements, is totally ordered and locally finite.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9961772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study an approximate biflatness of , where is a Clifford semigroup. Indeed, we show that a Clifford semigroup algebra is approximately biflat if and only if every maximal subgroup of is amenable, is locally finite, and has an approximate identity in . Moreover, we prove that is approximately biflat if and only if each maximal subgroup of is amenable for an inverse semigroup such that , the set of its idempotent elements, is totally ordered and locally finite.