Learning Automata with Hyperlink Features for Detecting Venomous Social Trolls on the Social Media Platform

D. Shubhangi, Preeti
{"title":"Learning Automata with Hyperlink Features for Detecting Venomous Social Trolls on the Social Media Platform","authors":"D. Shubhangi, Preeti","doi":"10.1109/ICSES52305.2021.9633969","DOIUrl":null,"url":null,"abstract":"Nowadays the widening of illegal activity in the social media, intelligent machinery to detect harmful web pages is required. URL analysis is the best method for detecting phishing and other assaults. Venomous internet robots create fraud posts and start the communication by impersonating a follower or generating several fraud social accounts that are used for venomous purposes. Furthermore, hostile internet robots use shortened harmful URLs in tweets to send queries from online social networking users to venomous servers. As a result, distinguishing harmful internet robots from legitimate users is one of the Twitter network's and instagram's utmost critical responsibilities. To identify harmful internet robots, hyperlink-based data (such as Hyperlink redirect, number of shared hyperlinks, and garbage material in URLs) takes small amount of duration to extract than social chart-based factors (which repeat on the social communication of peoples). A Learning Automata algorithm is used to find the real users of the social media network.","PeriodicalId":6777,"journal":{"name":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","volume":"40 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSES52305.2021.9633969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays the widening of illegal activity in the social media, intelligent machinery to detect harmful web pages is required. URL analysis is the best method for detecting phishing and other assaults. Venomous internet robots create fraud posts and start the communication by impersonating a follower or generating several fraud social accounts that are used for venomous purposes. Furthermore, hostile internet robots use shortened harmful URLs in tweets to send queries from online social networking users to venomous servers. As a result, distinguishing harmful internet robots from legitimate users is one of the Twitter network's and instagram's utmost critical responsibilities. To identify harmful internet robots, hyperlink-based data (such as Hyperlink redirect, number of shared hyperlinks, and garbage material in URLs) takes small amount of duration to extract than social chart-based factors (which repeat on the social communication of peoples). A Learning Automata algorithm is used to find the real users of the social media network.
具有超链接功能的学习自动机,用于检测社交媒体平台上的有毒社交巨魔
如今,社交媒体上的非法活动越来越多,需要智能机器来检测有害网页。URL分析是检测网络钓鱼和其他攻击的最佳方法。恶意的互联网机器人创建欺诈帖子,并通过冒充追随者或生成几个用于恶意目的的欺诈社交账户来开始通信。此外,恶意的互联网机器人在推文中使用缩短的有害url,将在线社交网络用户的查询发送到有毒的服务器。因此,区分有害的互联网机器人和合法用户是Twitter网络和instagram最重要的责任之一。为了识别有害的互联网机器人,基于超链接的数据(如超链接重定向、共享超链接数量和url中的垃圾材料)比基于社会图表的因素(在人们的社会交流中重复)需要较少的持续时间来提取。使用学习自动机算法来寻找社交媒体网络的真实用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信