{"title":"A Summary of Analytical Methods to Simulate Chemical Treatments in ICD Completed Wells","authors":"A. Kaur, R. Stalker, G. Graham, D. Frigo","doi":"10.2118/193542-MS","DOIUrl":null,"url":null,"abstract":"\n Inflow Control Devices (ICDs) are being increasingly used in complex, heterogeneous reservoirs to make the inflow profile more uniform, delay breakthrough of water and/or gas and limit differential depletion, which can lead to crossflow and other detrimental phenomena. However, ICDs not only alter inflow behaviour: they also affect outflow of fluid during chemical treatments, such as scale squeezes, stimulation, etc., which may be applied periodically during well life.\n Methods to account for the additional flow resistance from ICDs when predicting placement of bullheaded treatments are discussed in this paper, in particular, to evaluate whether a theoretical approach based upon Bernoulli's Theorem leads to sufficiently accurate predictions in the absence of laboratory correlations between pressure drop across the ICD and flow rate. This approach may also become significant where the laboratory calibration might be expected to have changed during well life, such as, under the influence of erosion.\n The paper describes two analytical methods of simulating placement in a multi-zone well in a heterogeneous reservoir in the Middle East: the first is empirical and models the pressure drop using an equation derived from calibration data in the laboratory; the second uses the Bernoulli equation, and is theoretical. For the empirical approach, the laboratory-based pressure-drop/flowrate calibration data were fitted to an equation, with parameters that depended upon the nozzle dimensions. The theoretical approach calculated the pressure drop using the Bernoulli equation for a cylindrical ICD nozzle. Both methods were used to simulate placement of a generic scale-inhibitor squeeze treatment and the corresponding chemical returns for each zone in the well. In general, the differences in the predictions between the two models were found to be very minor, showing that a theoretical approach is sufficiently accurate to design and evaluate chemical treatments in wells fitted with ICDs in most cases.\n This means a very rapid analytical approach can be used to design and evaluate near-wellbore treatments in such wells without resorting to much more complex, numerical-based reservoir simulators, even when calibration data about the ICD performance are not available.","PeriodicalId":11243,"journal":{"name":"Day 2 Tue, April 09, 2019","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, April 09, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193542-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Inflow Control Devices (ICDs) are being increasingly used in complex, heterogeneous reservoirs to make the inflow profile more uniform, delay breakthrough of water and/or gas and limit differential depletion, which can lead to crossflow and other detrimental phenomena. However, ICDs not only alter inflow behaviour: they also affect outflow of fluid during chemical treatments, such as scale squeezes, stimulation, etc., which may be applied periodically during well life.
Methods to account for the additional flow resistance from ICDs when predicting placement of bullheaded treatments are discussed in this paper, in particular, to evaluate whether a theoretical approach based upon Bernoulli's Theorem leads to sufficiently accurate predictions in the absence of laboratory correlations between pressure drop across the ICD and flow rate. This approach may also become significant where the laboratory calibration might be expected to have changed during well life, such as, under the influence of erosion.
The paper describes two analytical methods of simulating placement in a multi-zone well in a heterogeneous reservoir in the Middle East: the first is empirical and models the pressure drop using an equation derived from calibration data in the laboratory; the second uses the Bernoulli equation, and is theoretical. For the empirical approach, the laboratory-based pressure-drop/flowrate calibration data were fitted to an equation, with parameters that depended upon the nozzle dimensions. The theoretical approach calculated the pressure drop using the Bernoulli equation for a cylindrical ICD nozzle. Both methods were used to simulate placement of a generic scale-inhibitor squeeze treatment and the corresponding chemical returns for each zone in the well. In general, the differences in the predictions between the two models were found to be very minor, showing that a theoretical approach is sufficiently accurate to design and evaluate chemical treatments in wells fitted with ICDs in most cases.
This means a very rapid analytical approach can be used to design and evaluate near-wellbore treatments in such wells without resorting to much more complex, numerical-based reservoir simulators, even when calibration data about the ICD performance are not available.