{"title":"Throughput maximization of large-scale secondary networks over licensed and unlicensed spectra","authors":"M. Hanawal, Y. Hayel, Quanyan Zhu","doi":"10.23919/WIOPT.2017.7959879","DOIUrl":null,"url":null,"abstract":"Throughput of a mobile ad hoc network (MANET) operating on an unlicensed spectrum can increase if nodes can also transmit on a (shared) licensed spectrum. However, the transmissions on the licensed spectrum has to be limited to avoid degradation of quality of service (QoS) to primary users (PUs). We address the problem of how the nodes of a MANET or secondary users (SUs) should spread their transmissions on both licensed and unlicensed spectra to maximize network throughput, and characterize ‘throughput gain’ achieved in such spectrum sharing systems. We show that the gain can be significant and is increasing in the density of the SUs. The primary and secondary users are modeled as two independent Poisson point processes and their performance is evaluated using techniques from stochastic geometry.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"23 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Throughput of a mobile ad hoc network (MANET) operating on an unlicensed spectrum can increase if nodes can also transmit on a (shared) licensed spectrum. However, the transmissions on the licensed spectrum has to be limited to avoid degradation of quality of service (QoS) to primary users (PUs). We address the problem of how the nodes of a MANET or secondary users (SUs) should spread their transmissions on both licensed and unlicensed spectra to maximize network throughput, and characterize ‘throughput gain’ achieved in such spectrum sharing systems. We show that the gain can be significant and is increasing in the density of the SUs. The primary and secondary users are modeled as two independent Poisson point processes and their performance is evaluated using techniques from stochastic geometry.