Existence of Periodic Waves in a Perturbed Generalized BBM Equation

Yanfei Dai, Minzhi Wei, Maoan Han
{"title":"Existence of Periodic Waves in a Perturbed Generalized BBM Equation","authors":"Yanfei Dai, Minzhi Wei, Maoan Han","doi":"10.1142/s0218127423500608","DOIUrl":null,"url":null,"abstract":"In this paper, a perturbed quintic BBM equation with weak backward diffusion and dissipation effects is investigated. By applying geometric singular perturbation theory and analyzing the perturbations of a Hamiltonian system with a hyper-elliptic Hamiltonian of degree six, we prove the existence of isolated periodic wave solutions with certain wave speed in an open interval. It is also shown that isolated periodic wave solutions persist for any energy parameter [Formula: see text] in an open interval under small perturbation. Furthermore, we prove that the wave speed [Formula: see text] of periodic wave is strictly monotonically increasing with respect to [Formula: see text] by analyzing Abelian integral having three generating elements. Moreover, the upper and lower bounds of the limiting wave speed are obtained. Our analysis is mainly based on Melnikov theory, Chebyshev criteria, and symbolic computation, which may be useful for other problems.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"28 1","pages":"2350060:1-2350060:18"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423500608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a perturbed quintic BBM equation with weak backward diffusion and dissipation effects is investigated. By applying geometric singular perturbation theory and analyzing the perturbations of a Hamiltonian system with a hyper-elliptic Hamiltonian of degree six, we prove the existence of isolated periodic wave solutions with certain wave speed in an open interval. It is also shown that isolated periodic wave solutions persist for any energy parameter [Formula: see text] in an open interval under small perturbation. Furthermore, we prove that the wave speed [Formula: see text] of periodic wave is strictly monotonically increasing with respect to [Formula: see text] by analyzing Abelian integral having three generating elements. Moreover, the upper and lower bounds of the limiting wave speed are obtained. Our analysis is mainly based on Melnikov theory, Chebyshev criteria, and symbolic computation, which may be useful for other problems.
一类摄动广义BBM方程中周期波的存在性
研究了一类具有弱后向扩散和耗散效应的扰动五次BBM方程。应用几何奇异摄动理论,分析了具有超椭圆六次哈密顿量的哈密顿系统的摄动,证明了开区间内具有一定波速的孤立周期波解的存在性。还证明了在小扰动下,在开区间内,对于任何能量参数[公式:见文],孤立周期波解持续存在。进一步,通过分析具有三个生成元的阿贝尔积分,证明了周期波的波速[公式:见文]相对于[公式:见文]是严格单调递增的。此外,还得到了极限波速的上下界。我们的分析主要基于Melnikov理论,Chebyshev准则和符号计算,这可能对其他问题有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信