On Shimoda's Theorem

Pub Date : 2023-03-01 DOI:10.35634/vm230102
A. Atamuratov, K.K. Rasulov
{"title":"On Shimoda's Theorem","authors":"A. Atamuratov, K.K. Rasulov","doi":"10.35634/vm230102","DOIUrl":null,"url":null,"abstract":"The present work is devoted to Shimoda's Theorem on the holomorphicity of a function $f(z,w)$ which is holomorphic by $w\\in V$ for each fixed $z\\in U$ and is holomorphic by $z\\in U$ for each fixed $w\\in E$, where $E\\subset V$ is a countable set with at least one limit point in $V$. Shimoda proves that in this case $f(z,w)$ is holomorphic in $U\\times V$ except for a nowhere dense closed subset of $U\\times V$. We prove the converse of this result, that is for an arbitrary given nowhere dense closed subset of $U$, $S\\subset U$, there exists a holomorphic function, satisfying Shimoda's Theorem on $U\\times V\\subset {\\mathbb C}^{2}$, that is not holomorphic on $S\\times V$. Moreover, we observe conditions which imply empty exception sets on Shimoda's Theorem and prove generalizations of Shimoda's Theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present work is devoted to Shimoda's Theorem on the holomorphicity of a function $f(z,w)$ which is holomorphic by $w\in V$ for each fixed $z\in U$ and is holomorphic by $z\in U$ for each fixed $w\in E$, where $E\subset V$ is a countable set with at least one limit point in $V$. Shimoda proves that in this case $f(z,w)$ is holomorphic in $U\times V$ except for a nowhere dense closed subset of $U\times V$. We prove the converse of this result, that is for an arbitrary given nowhere dense closed subset of $U$, $S\subset U$, there exists a holomorphic function, satisfying Shimoda's Theorem on $U\times V\subset {\mathbb C}^{2}$, that is not holomorphic on $S\times V$. Moreover, we observe conditions which imply empty exception sets on Shimoda's Theorem and prove generalizations of Shimoda's Theorem.
分享
查看原文
关于下田定理
本文研究了函数$f(z,w)$的全纯性的Shimoda定理,该函数$f(z,w)$对于U$中的每一个固定$z\ \在V$中是全纯的,对于E$中的每一个固定$w\ \在U$中是全纯的,其中$E\子集V$是在$V$中至少有一个极限点的可数集合。Shimoda证明了在这种情况下$f(z,w)$在$U\ * V$中是全纯的,除了$U\ * V$的一个无处稠密的闭子集。我们证明了这个结果的逆命题,即对于任意给定的$U$ S\子集$U$,存在一个满足$U\ * V\子集{\mathbb C}^{2}$上的Shimoda定理的全纯函数,它在$S\ * V$上不是全纯的。此外,我们还观察了下田定理上包含空异常集的条件,并证明了下田定理的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信