David S. Ebert, Randall M Rohrer, Christopher D Shaw, Pradyut Panda, James M. Kukla, D. Roberts
{"title":"Procedural Shape Generation for Multi-dimensional Data Visualization","authors":"David S. Ebert, Randall M Rohrer, Christopher D Shaw, Pradyut Panda, James M. Kukla, D. Roberts","doi":"10.2312/vissym19991017","DOIUrl":null,"url":null,"abstract":"Visualization of multi-dimensional data is a challenging task. The goal is not the display of multiple data dimensions, but user comprehension of the multi-dimensional data. This paper explores several techniques for perceptually motivated procedural generation of shapes to increase the comprehension of multi-dimensional data. Our glyph-based system allows the visualization of both regular and irregular grids of volumetric data. A glyph’s location, 3D size, color, and opacity encode up to 8 attributes of scalar data per glyph. We have extended the system’s capabilities to explore shape variation as a visualization attribute. We use procedural shape generation techniques because they allow flexibility, data abstraction, and freedom from specification of detailed shapes. We have explored three procedural shape generation techniques: fractal detail generation, superquadrics, and implicit surfaces. These techniques allow from 1 to 14 additional data dimensions to be visualized using glyph shape.","PeriodicalId":51003,"journal":{"name":"Computer Graphics World","volume":"11 1","pages":"375-384"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vissym19991017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 80
Abstract
Visualization of multi-dimensional data is a challenging task. The goal is not the display of multiple data dimensions, but user comprehension of the multi-dimensional data. This paper explores several techniques for perceptually motivated procedural generation of shapes to increase the comprehension of multi-dimensional data. Our glyph-based system allows the visualization of both regular and irregular grids of volumetric data. A glyph’s location, 3D size, color, and opacity encode up to 8 attributes of scalar data per glyph. We have extended the system’s capabilities to explore shape variation as a visualization attribute. We use procedural shape generation techniques because they allow flexibility, data abstraction, and freedom from specification of detailed shapes. We have explored three procedural shape generation techniques: fractal detail generation, superquadrics, and implicit surfaces. These techniques allow from 1 to 14 additional data dimensions to be visualized using glyph shape.