A. Murokh, C. Pellegrini, J. Rosenzweig, P. Frigola, P. Musumeci, A. Tremaine, M. Babzien, I. Ben-Zvi, A. Doyuran, E. Johnson, J. Skaritka, X. Wang, K. Van Bibber, J. Hill, G. Le Sage, D. Nguyen, M. Cornacchia
{"title":"Photon beam diagnostics for VISA FEL","authors":"A. Murokh, C. Pellegrini, J. Rosenzweig, P. Frigola, P. Musumeci, A. Tremaine, M. Babzien, I. Ben-Zvi, A. Doyuran, E. Johnson, J. Skaritka, X. Wang, K. Van Bibber, J. Hill, G. Le Sage, D. Nguyen, M. Cornacchia","doi":"10.1109/PAC.1999.792736","DOIUrl":null,"url":null,"abstract":"The VISA (Visible to Infrared SASE Amplifier) project is designed to be a SASE-FEL driven to saturation in the sub-micron wavelength region. Its goal is to test various aspects of the existing theory of self-amplified spontaneous emission, as well as numerical codes. Measurements include: angular and spectral distribution of the FEL light at the exit and inside of the undulator; electron beam micro-bunching using CTR; single-shot time resolved measurements of the pulse profile, using an auto-correlation technique and FROG algorithm. The diagnostics are designed to provide maximum information on the physics of the SASE-FEL process, to ensure a close comparison of the experimental results with theory and simulations.","PeriodicalId":20453,"journal":{"name":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.1999.792736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The VISA (Visible to Infrared SASE Amplifier) project is designed to be a SASE-FEL driven to saturation in the sub-micron wavelength region. Its goal is to test various aspects of the existing theory of self-amplified spontaneous emission, as well as numerical codes. Measurements include: angular and spectral distribution of the FEL light at the exit and inside of the undulator; electron beam micro-bunching using CTR; single-shot time resolved measurements of the pulse profile, using an auto-correlation technique and FROG algorithm. The diagnostics are designed to provide maximum information on the physics of the SASE-FEL process, to ensure a close comparison of the experimental results with theory and simulations.